Abstract

It is shown theoretically that optical bistability will exist in a material whose optical absorption is more than linearly proportional to the degree to which the material is excited. No cavity or external feedback is required. The underlying principle of this bistability appears to be a generalization of several previous independent discussions of mirrorless bistabilities in specific physical systems. This bistability and associated differential gain are demonstrated experimentally using a thermal nonlinearity in a GaAs/GaAlAs multiple-quantum-well semiconductor. Theory and experiment show good agreement.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, the recent review by D. A. B. Miller, Laser Focus 18(4), 79 (1982), which categories some types of optical bistability.
  2. A. E. Kaplan, Phys. Rev. Lett. 48, 138 (1982).
    [CrossRef]
  3. J. Hajto, I. Janossy, Philos. Mag. B47, 346 (1983).
  4. F. A. Hopf, C. M. Bowden, W. Louisell, Phys. Rev. A (to be published).
  5. K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983).
    [CrossRef]
  6. See, for example, A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981); D. A. B. Miller, Laser Focus 19(7), 61 (1983).
    [CrossRef]
  7. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
    [CrossRef]
  8. D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
    [CrossRef]
  9. D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
    [CrossRef] [PubMed]

1983 (4)

J. Hajto, I. Janossy, Philos. Mag. B47, 346 (1983).

K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
[CrossRef] [PubMed]

1982 (3)

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

See, for example, the recent review by D. A. B. Miller, Laser Focus 18(4), 79 (1982), which categories some types of optical bistability.

A. E. Kaplan, Phys. Rev. Lett. 48, 138 (1982).
[CrossRef]

1981 (1)

See, for example, A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981); D. A. B. Miller, Laser Focus 19(7), 61 (1983).
[CrossRef]

Bohnert, K.

K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983).
[CrossRef]

Bowden, C. M.

F. A. Hopf, C. M. Bowden, W. Louisell, Phys. Rev. A (to be published).

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

Eilenberger, D. J.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

Hajto, J.

J. Hajto, I. Janossy, Philos. Mag. B47, 346 (1983).

Hopf, F. A.

F. A. Hopf, C. M. Bowden, W. Louisell, Phys. Rev. A (to be published).

Janossy, I.

J. Hajto, I. Janossy, Philos. Mag. B47, 346 (1983).

Kalt, H.

K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983).
[CrossRef]

Kaplan, A. E.

A. E. Kaplan, Phys. Rev. Lett. 48, 138 (1982).
[CrossRef]

Klingshirn, C.

K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983).
[CrossRef]

Louisell, W.

F. A. Hopf, C. M. Bowden, W. Louisell, Phys. Rev. A (to be published).

Miller, A.

See, for example, A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981); D. A. B. Miller, Laser Focus 19(7), 61 (1983).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
[CrossRef] [PubMed]

See, for example, the recent review by D. A. B. Miller, Laser Focus 18(4), 79 (1982), which categories some types of optical bistability.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

See, for example, A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981); D. A. B. Miller, Laser Focus 19(7), 61 (1983).
[CrossRef]

Smith, P. W.

D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
[CrossRef] [PubMed]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

Smith, S. D.

See, for example, A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981); D. A. B. Miller, Laser Focus 19(7), 61 (1983).
[CrossRef]

Tsang, W. T.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

D. A. B. Miller, D. S. Chemla, P. W. Smith, A. C. Gossard, W. Wiegmann, Opt. Lett. 8, 477 (1983).
[CrossRef] [PubMed]

Adv. Phys. (1)

See, for example, A. Miller, D. A. B. Miller, S. D. Smith, Adv. Phys. 30, 697 (1981); D. A. B. Miller, Laser Focus 19(7), 61 (1983).
[CrossRef]

Appl. Phys. Lett. (3)

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. T. Tsang, Appl. Phys. Lett. 41, 679 (1982).
[CrossRef]

D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, W. Wiegmann, Appl. Phys. Lett. 42, 925 (1983).
[CrossRef]

K. Bohnert, H. Kalt, C. Klingshirn, Appl. Phys. Lett. 43, 1088 (1983).
[CrossRef]

Laser Focus (1)

See, for example, the recent review by D. A. B. Miller, Laser Focus 18(4), 79 (1982), which categories some types of optical bistability.

Opt. Lett. (1)

Philos. Mag. (1)

J. Hajto, I. Janossy, Philos. Mag. B47, 346 (1983).

Phys. Rev. Lett. (1)

A. E. Kaplan, Phys. Rev. Lett. 48, 138 (1982).
[CrossRef]

Other (1)

F. A. Hopf, C. M. Bowden, W. Louisell, Phys. Rev. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Graphical solution of optical bistability due to hypothetical absorption increasing with increasing excitation. (a) The dashed line is T = 1 − A(N) [Eq. (1)]. Lines A to D correspond to increasing power in Eq. (2). Lines A and D intersect only once with the curve, indicating only one solution for these powers. Lines B and C, each showing two intersections, represent the critical powers for switch-up and switch-down. Any lines between B and C would show three intersections, as required for optical bistability. (b) PT, the transmitted power, is plotted against P, the incident power, using the above solution method, ρ, η = 1 for simplicity.

Fig. 2
Fig. 2

Solid line, measured low-power optical transmission spectrum of the sample. Dashed line, smoothed analytical function used for theoretical modeling.

Fig. 3
Fig. 3

Experimental input–output characteristics of the sample for four different laser photon energies: (a) 1.4544 eV, (b) 1.4523 eV, (c) 1.4519 eV, (d) 1.4500 eV, and theoretical curves calculated all with the same parameter values according to the semiempirical model discussed in the text. Only two adjustable parameters were used in fitting the whole set of theoretical curves.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = A ( N ) .
N = η A P ,
A ( N 2 ) N 2 > A ( N 1 ) N 1 ,
A ( N ) = 1 0 . 88 exp [ 7 . 5 exp ( x + N 1 . 4778 ) 2 ( 0 . 12 ) 2 ] ,

Metrics