Abstract

A hybrid integrated optical threshold logic element is proposed for fast digital computation on a chip level. Each input and output optical beam occupies a separate channel and is coupled directly to the source. This suggests the possibility of achieving reliable optical digital operation in a complex network. Such a network is expected to be particularly compact because one or several threshold logic elements may replace many simple optical logic elements. The devices are also capable of high-speed programmability, so the same set of elements can serve different functions. Applications to conventional arithmetic computation and to high-speed residue arithmetic computation are presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983); 8 bits is normally taken as the limiting accuracy for analog calculations.
  2. W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).
  3. J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
    [CrossRef]
  4. W. E. Martin, Appl. Phys. Lett. 26, 562 (1975).
    [CrossRef]
  5. L. Goldberg, S. H. Lee, Appl. Opt. 18, 2045 (1979).
    [CrossRef] [PubMed]
  6. D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970).
    [CrossRef]
  7. P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18, 26 (1981).
  8. R. L. Holman, Electrooptic Waveguide Modulators: Fabrication and Performance (University of Rochester, Rochester, N. Y., 1983) pp. 43–54. A crude rule of thumb for damage thresholds at 632.8 nm in LiNbO3 is 100 W/cm2 [R. L. Holman, Battelle Columbus Laboratories, Columbus, Ohio 43201 (personal communication)].
  9. A. Neyer, Electron. Lett. 19, 553 (1983).
    [CrossRef]
  10. Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1978), pp. 189–213.
  11. S. Y. Huang, S. H. Lee, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 123 (1983).
  12. F. K. Reinhart, Appl. Phys. Lett. 22, 372 (1973).
    [CrossRef]
  13. M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
    [CrossRef]
  14. R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980).
    [CrossRef]
  15. D. H. Navon, Electronic Materials and Devices (Houghton Mifflin, Boston, Mass., 1975), p. 207.
  16. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, Appl. Opt. 18, 149 (1979).
    [CrossRef] [PubMed]
  17. D. Psaltis, D. Casasent, Appl. Opt. 18, 163 (1979).
    [CrossRef] [PubMed]
  18. A. Tai, I. Cindrich, J. R. Fienup, C. C. Aleksoff, Appl. Opt. 18, 2812 (1979).
    [CrossRef] [PubMed]

1983 (3)

C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983); 8 bits is normally taken as the limiting accuracy for analog calculations.

A. Neyer, Electron. Lett. 19, 553 (1983).
[CrossRef]

S. Y. Huang, S. H. Lee, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 123 (1983).

1982 (1)

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

1981 (1)

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18, 26 (1981).

1980 (1)

R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980).
[CrossRef]

1979 (4)

1975 (3)

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

W. E. Martin, Appl. Phys. Lett. 26, 562 (1975).
[CrossRef]

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

1973 (1)

F. K. Reinhart, Appl. Phys. Lett. 22, 372 (1973).
[CrossRef]

1970 (1)

D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970).
[CrossRef]

Aleksoff, C. C.

Blum, F. A.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Bomberger, W. D.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Campbell, J. C.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Casasent, D.

Chen, B.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Cindrich, I.

Combernale, Y.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Cross, P. S.

R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980).
[CrossRef]

Fienup, J. R.

Findakly, T.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Garmire, E.

D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970).
[CrossRef]

Glass, A. M.

R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980).
[CrossRef]

Goldberg, L.

Goodman, J. W.

Hall, D.

D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970).
[CrossRef]

Holman, R. L.

R. L. Holman, Electrooptic Waveguide Modulators: Fabrication and Performance (University of Rochester, Rochester, N. Y., 1983) pp. 43–54. A crude rule of thumb for damage thresholds at 632.8 nm in LiNbO3 is 100 W/cm2 [R. L. Holman, Battelle Columbus Laboratories, Columbus, Ohio 43201 (personal communication)].

Huang, A.

Huang, S. Y.

S. Y. Huang, S. H. Lee, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 123 (1983).

Ishihara, S.

Kenan, R. P.

C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983); 8 bits is normally taken as the limiting accuracy for analog calculations.

Kohavi, Z.

Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1978), pp. 189–213.

Lawley, K. L.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Lee, S. H.

S. Y. Huang, S. H. Lee, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 123 (1983).

L. Goldberg, S. H. Lee, Appl. Opt. 18, 2045 (1979).
[CrossRef] [PubMed]

Martin, W. E.

W. E. Martin, Appl. Phys. Lett. 26, 562 (1975).
[CrossRef]

Mathieu, X.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Navon, D. H.

D. H. Navon, Electronic Materials and Devices (Houghton Mifflin, Boston, Mass., 1975), p. 207.

Neyer, A.

A. Neyer, Electron. Lett. 19, 553 (1983).
[CrossRef]

Ostrowsky, D. B.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Papuchon, M.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Psaltis, D.

Reiber, L.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Reinhart, F. K.

F. K. Reinhart, Appl. Phys. Lett. 22, 372 (1973).
[CrossRef]

Roy, A. M.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Schmidt, R. V.

R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980).
[CrossRef]

Sejourne, B.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Shaw, D. W.

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Smith, P. W.

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18, 26 (1981).

Tai, A.

Tomlinson, W. J.

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18, 26 (1981).

Tsunoda, Y.

Verber, C. M.

C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983); 8 bits is normally taken as the limiting accuracy for analog calculations.

Werner, M.

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

Yariv, A.

D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (5)

F. K. Reinhart, Appl. Phys. Lett. 22, 372 (1973).
[CrossRef]

M. Papuchon, Y. Combernale, X. Mathieu, D. B. Ostrowsky, L. Reiber, A. M. Roy, B. Sejourne, M. Werner, Appl. Phys. Lett. 27, 289 (1975).
[CrossRef]

D. Hall, A. Yariv, E. Garmire, Appl. Phys. Lett. 17, 127 (1970).
[CrossRef]

J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

W. E. Martin, Appl. Phys. Lett. 26, 562 (1975).
[CrossRef]

Electron. Lett. (1)

A. Neyer, Electron. Lett. 19, 553 (1983).
[CrossRef]

IEEE Spectrum (1)

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18, 26 (1981).

J. Appl. Phys. (1)

R. V. Schmidt, P. S. Cross, A. M. Glass, J. Appl. Phys. 51, 90 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983); 8 bits is normally taken as the limiting accuracy for analog calculations.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

S. Y. Huang, S. H. Lee, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 123 (1983).

Other (3)

R. L. Holman, Electrooptic Waveguide Modulators: Fabrication and Performance (University of Rochester, Rochester, N. Y., 1983) pp. 43–54. A crude rule of thumb for damage thresholds at 632.8 nm in LiNbO3 is 100 W/cm2 [R. L. Holman, Battelle Columbus Laboratories, Columbus, Ohio 43201 (personal communication)].

D. H. Navon, Electronic Materials and Devices (Houghton Mifflin, Boston, Mass., 1975), p. 207.

Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1978), pp. 189–213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of a threshold logic element.

Fig. 2
Fig. 2

Binary addition of a two-bit number with a one-bit number. (a) Truth-table representation and (b) Karnaugh map for Z2.

Fig. 3
Fig. 3

Implementation of two-plus-one-bit addition in terms of threshold logic elements. System is for illustration only and does not represent a minimum-element configuration.

Fig. 4
Fig. 4

Interconnection schematic of a coupled-waveguide network and the associated electronics for physically implementing a three-variable-threshold logic element. (a) Complete system with nonlinear detector and (b) IV characteristics of a diode detector.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y = 1 if and only if i = 1 n w i x i T ,
y = 0 if and only if i = 1 n w i x i < T .

Metrics