Abstract

Single-mode optical Y junctions have been fabricated using silver-ion exchange in glass. Radiation losses are given for several different input conditions to the branch arms when the Y junction is used as an optical power combiner. A minimum radiation loss of 3 dB has been measured when only one branch arm is excited.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
    [CrossRef]
  2. H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).
  3. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
    [CrossRef]
  4. W. K. Burns, A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
    [CrossRef]
  5. I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” Microwaves Opt. Acoust. 2, 7–12 (1978).
    [CrossRef]
  6. R. Baets, P. Lagasse, “Calculation of radiation loss in integrated optic tapers and Y-junctions,” Appl. Opt. 21, 1972–1978 (1982).
    [CrossRef] [PubMed]
  7. M. Izutsu, Y. Nakai, T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7, 136–138 (1982).
    [CrossRef] [PubMed]
  8. R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation,” Appl. Opt. 22, 1923–1928 (1983).
    [CrossRef] [PubMed]
  9. L. D. Hutcheson, I. A. White, J. J. Burke, “Comparison of bending losses in integrated optical circuits,” Opt. Lett. 5, 276–278 (1980).
    [CrossRef] [PubMed]
  10. R. H. Rediker, F. J. Leonberger, “Analysis of integrated-optics modulator near 3-dB coupler and Mach–Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–1816 (1962).

1983 (1)

1982 (2)

1980 (2)

L. D. Hutcheson, I. A. White, J. J. Burke, “Comparison of bending losses in integrated optical circuits,” Opt. Lett. 5, 276–278 (1980).
[CrossRef] [PubMed]

W. K. Burns, A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

1978 (3)

I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” Microwaves Opt. Acoust. 2, 7–12 (1978).
[CrossRef]

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
[CrossRef]

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
[CrossRef]

1962 (1)

R. H. Rediker, F. J. Leonberger, “Analysis of integrated-optics modulator near 3-dB coupler and Mach–Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–1816 (1962).

Anderson, I.

I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” Microwaves Opt. Acoust. 2, 7–12 (1978).
[CrossRef]

Arditty, H. J.

H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).

Baets, R.

Bourbin, Y.

H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).

Burke, J. J.

Burns, W. K.

W. K. Burns, A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
[CrossRef]

Giallorenzi, T. G.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
[CrossRef]

Hutcheson, L. D.

Izutsu, M.

Lagasse, P.

Leonberger, F. J.

R. H. Rediker, F. J. Leonberger, “Analysis of integrated-optics modulator near 3-dB coupler and Mach–Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–1816 (1962).

Milton, A. F.

W. K. Burns, A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

Moeller, R. P.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
[CrossRef]

Nakai, Y.

Papuchon, M.

H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).

Puech, C.

H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).

Rediker, R. H.

R. H. Rediker, F. J. Leonberger, “Analysis of integrated-optics modulator near 3-dB coupler and Mach–Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–1816 (1962).

Sueta, T.

Vatoux, S.

H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).

Walker, R. G.

West, E. J.

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
[CrossRef]

White, I. A.

Wilkinson, C. D. W.

Wilkinson, J. A. H.

Yajima, H.

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W. K. Burns, T. G. Giallorenzi, R. P. Moeller, E. J. West, “Interferometric waveguide modulator with polarisation-independant operation,” Appl. Phys. Lett. 33, 944–947 (1978).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
[CrossRef]

W. K. Burns, A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

R. H. Rediker, F. J. Leonberger, “Analysis of integrated-optics modulator near 3-dB coupler and Mach–Zehnder interferometric modulator using four-port scattering matrix,” IEEE J. Quantum Electron. QE-18, 1813–1816 (1962).

Microwaves Opt. Acoust. (1)

I. Anderson, “Transmission performance of Y-junctions in planar dielectric waveguide,” Microwaves Opt. Acoust. 2, 7–12 (1978).
[CrossRef]

Opt. Lett. (2)

Other (1)

H. J. Arditty, M. Papuchon, S. Vatoux, Y. Bourbin, C. Puech, “Fibre optic gyroscope with a multifunction integrated optic circuit,” in Digest of Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Y-junction geometry; all waveguides are single mode.

Fig. 2
Fig. 2

Laser redundancy system for optical waveguide circuitry using a Y junction. If laser 1 were to fail during operation, laser 2 would be ready to replace it immediately.

Fig. 3
Fig. 3

Details of the rotational and linear goniometer movements used in experiments.

Fig. 4
Fig. 4

Experimental radiation-loss measurements when only one branch arm carries power to the junction, ⓐ Measured Y-junction radiation loss (ηy) for a device with a branch angle of 1° using the two-prism method. ⓑ Variation in measured Y-junction radiation loss (ηy) with branch angle (α).

Fig. 5
Fig. 5

Variation in optical power into the straight output guide with phase difference Δϕ between the Y-junction branch arms and with tilt angle Δθ.

Fig. 6
Fig. 6

Scattering from a Y junction with a branch angle of 2°. (a) Oil drop on the surface of the glass above the Y junction. (b) Oil drop being used to leak optical power from the upper arm of the Y junction.

Fig. 7
Fig. 7

Plot of P0/P2 against P1/P2 with P1 and P2 in phase. The input power in the two branch arms is given by P1 and P2, and the output power in the straight guide is given by Po.

Metrics