Abstract

We describe the results of experiments on bistable and multistable self-focusing devices using liquid suspensions of dielectric particles as the nonlinear medium. The nonlinear parameters for this medium are calculable from first principles. A simple model predicts regions of bistability and multistability that are in good agreement with the experimental observations.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, “Optical bistability based on self-focusing,” Opt. Lett. 6, 345 (1981).
    [CrossRef] [PubMed]
  2. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, “Optical bistability based on self-focusing: an approximate analysis,” IEEE J. Quantum Electron. QE-18, 2016 (1982).
    [CrossRef]
  3. W. G. Wagner, H. A. Haus, J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).
    [CrossRef]
  4. See, for example, A. Ashkin, J. M. Dziedzic, P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett. 7, 276 (1982).
    [CrossRef] [PubMed]
  5. For a description of the nonlinear characteristics of a liquid suspension of dielectric particles, see P. W. Smith, P. J. Maloney, A. Ashkin, “Use of a liquid suspension of dielectric spheres as an artifical Kerr medium,” Opt. Lett. 7, 347 (1982).
    [CrossRef] [PubMed]
  6. M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

1982 (4)

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, “Optical bistability based on self-focusing: an approximate analysis,” IEEE J. Quantum Electron. QE-18, 2016 (1982).
[CrossRef]

See, for example, A. Ashkin, J. M. Dziedzic, P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett. 7, 276 (1982).
[CrossRef] [PubMed]

For a description of the nonlinear characteristics of a liquid suspension of dielectric particles, see P. W. Smith, P. J. Maloney, A. Ashkin, “Use of a liquid suspension of dielectric spheres as an artifical Kerr medium,” Opt. Lett. 7, 347 (1982).
[CrossRef] [PubMed]

M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

1981 (1)

1968 (1)

W. G. Wagner, H. A. Haus, J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).
[CrossRef]

Ashkin, A.

Bjorkholm, J. E.

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, “Optical bistability based on self-focusing: an approximate analysis,” IEEE J. Quantum Electron. QE-18, 2016 (1982).
[CrossRef]

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, “Optical bistability based on self-focusing,” Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

Derstine, M. W.

M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

Dziedzic, J. M.

Gibbs, H. M.

M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

Haus, H. A.

W. G. Wagner, H. A. Haus, J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).
[CrossRef]

Hopf, F. A.

M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

Kaplan, A. E.

Maloney, P. J.

Marburger, J. H.

W. G. Wagner, H. A. Haus, J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).
[CrossRef]

Rushford, M.C.

M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

Smith, P. W.

Tomlinson, W. J.

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, “Optical bistability based on self-focusing: an approximate analysis,” IEEE J. Quantum Electron. QE-18, 2016 (1982).
[CrossRef]

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, “Optical bistability based on self-focusing,” Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

Wagner, W. G.

W. G. Wagner, H. A. Haus, J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, “Optical bistability based on self-focusing: an approximate analysis,” IEEE J. Quantum Electron. QE-18, 2016 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

M. W. Derstine, H. M. Gibbs, F. A. Hopf, M.C. Rushford, “Possible observation of optical chaos in an all-optical bistable device,” J. Opt. Soc. Am. 72, 1752 (1982).

Opt. Lett. (3)

Phys. Rev. (1)

W. G. Wagner, H. A. Haus, J. H. Marburger, “Large-scale self-trapping of optical beams in the paraxial ray approximation,” Phys. Rev. 175, 256 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Output spot size normalized with respect to input spot size as a function of input power normalized with respect to the critical power for self-focusing. The parameter β is a measure of the saturability of the nonlinearity (see text).

Fig. 3
Fig. 3

(a) Experimental output versus input: o-dichlorobenzene suspension, β = 0.21. (b) Theoretical output versus input: β = 0.21, R = 0.9, a2/w02 = 0.9.

Fig. 4
Fig. 4

(a) Experimental output versus input: aqueous suspension, β = 0.11. (b) Theoretical output versus input: β = 0.10, R = 0.9, a2/w02 = 0.25.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 2 η d z ¯ 2 = 1 η 3 { 1 [ ( P 0 P cr ) ( 1 + β P 0 P cr 1 η 2 ) 2 ] } ,

Metrics