Abstract

Optical mixing of waves separated in frequency by many gigahertz can be accomplished by allowing the waves to mix in a nonlinear medium to generate microwave difference frequencies. This basis for high-bandwidth optical mixers is demonstrated by mixing optical frequencies ~4 GHz apart of a pulsed dye-laser beam at ~660 nm in a LiTaO3 crystal to produce readily detectable microwave power at ~4 GHz.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Advanced Devices Inc., Los Alamos, New Mexico 87544, specifies response bandwidths from 7 to 10 GHz on its S-100-series pyroelectric detectors. The voltage responsivity, ≳5 μV/W, is flat above 10 μm and below 0.35 μm but unfortunately drops by some 2 orders of magnitude in the visible.
  2. G. Lucovsky, R. B. Emmons, Appl. Opt. 4, 697 (1965).
    [CrossRef]
  3. D. P. Schinke, R. G. Smith, A. R. Hartman, in Semiconductor Devices for Optical Communication, Vol. 39, H. Kressel, ed. (Springer-Verlag, New York, 1980), p. 63.
    [CrossRef]
  4. S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983).
    [CrossRef]
  5. S. Y. Wang, D. M. Bloom, Electron. Lett. 19, 554 (1983).
    [CrossRef]
  6. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  7. M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
    [CrossRef]
  8. K. E. Niebuhr, Appl. Phys. Lett. 2, 136 (1963).
    [CrossRef]
  9. F. Zernike, Phys. Rev. Lett. 22, 931 (1969).
    [CrossRef]
  10. N. Van Tran, C. K. N. Patel, Phys. Rev. Lett. 22, 463 (1969).
    [CrossRef]
  11. T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968).
    [CrossRef]
  12. T. J. Bridges, A. R. Strnad, Appl. Phys. Lett. 20, 382 (1972).
    [CrossRef]
  13. L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
    [CrossRef]
  14. T. J. Bridges, T. Y. Chang, Phys. Rev. Lett. 22, 811 (1969).
    [CrossRef]
  15. N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, G. C. Bjorklund, Opt. Lett. 8, 157 (1983).
    [CrossRef] [PubMed]
  16. P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
    [CrossRef]

1983

S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983).
[CrossRef]

S. Y. Wang, D. M. Bloom, Electron. Lett. 19, 554 (1983).
[CrossRef]

N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, G. C. Bjorklund, Opt. Lett. 8, 157 (1983).
[CrossRef] [PubMed]

1972

T. J. Bridges, A. R. Strnad, Appl. Phys. Lett. 20, 382 (1972).
[CrossRef]

1969

T. J. Bridges, T. Y. Chang, Phys. Rev. Lett. 22, 811 (1969).
[CrossRef]

F. Zernike, Phys. Rev. Lett. 22, 931 (1969).
[CrossRef]

N. Van Tran, C. K. N. Patel, Phys. Rev. Lett. 22, 463 (1969).
[CrossRef]

1968

T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968).
[CrossRef]

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

1966

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

1965

1963

K. E. Niebuhr, Appl. Phys. Lett. 2, 136 (1963).
[CrossRef]

1962

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
[CrossRef]

Ballman, A. A.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Bass, M.

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
[CrossRef]

Bjorklund, G. C.

Bloom, D. M.

S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983).
[CrossRef]

S. Y. Wang, D. M. Bloom, Electron. Lett. 19, 554 (1983).
[CrossRef]

Bridges, T. J.

T. J. Bridges, A. R. Strnad, Appl. Phys. Lett. 20, 382 (1972).
[CrossRef]

T. J. Bridges, T. Y. Chang, Phys. Rev. Lett. 22, 811 (1969).
[CrossRef]

Chang, T. Y.

T. J. Bridges, T. Y. Chang, Phys. Rev. Lett. 22, 811 (1969).
[CrossRef]

T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968).
[CrossRef]

Collins, D. M.

S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983).
[CrossRef]

Danen, V.

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

Emmons, R. B.

Franken, P. A.

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
[CrossRef]

Gallagher, T. F.

Hartman, A. R.

D. P. Schinke, R. G. Smith, A. R. Hartman, in Semiconductor Devices for Optical Communication, Vol. 39, H. Kressel, ed. (Springer-Verlag, New York, 1980), p. 63.
[CrossRef]

Hocker, L. O.

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

Javan, A.

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

Kachru, R.

Lenzo, P. V.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Lucovsky, G.

Niebuhr, K. E.

K. E. Niebuhr, Appl. Phys. Lett. 2, 136 (1963).
[CrossRef]

Patel, C. K. N.

N. Van Tran, C. K. N. Patel, Phys. Rev. Lett. 22, 463 (1969).
[CrossRef]

T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968).
[CrossRef]

Schinke, D. P.

D. P. Schinke, R. G. Smith, A. R. Hartman, in Semiconductor Devices for Optical Communication, Vol. 39, H. Kressel, ed. (Springer-Verlag, New York, 1980), p. 63.
[CrossRef]

Smith, R. G.

D. P. Schinke, R. G. Smith, A. R. Hartman, in Semiconductor Devices for Optical Communication, Vol. 39, H. Kressel, ed. (Springer-Verlag, New York, 1980), p. 63.
[CrossRef]

Sokoloff, D. R.

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

Spencer, E. G.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Strnad, A. R.

T. J. Bridges, A. R. Strnad, Appl. Phys. Lett. 20, 382 (1972).
[CrossRef]

Szoke, A.

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

Tran, N. H.

Turner, E. H.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Van Tran, N.

N. Van Tran, C. K. N. Patel, Phys. Rev. Lett. 22, 463 (1969).
[CrossRef]

T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968).
[CrossRef]

Wang, S. Y.

S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983).
[CrossRef]

S. Y. Wang, D. M. Bloom, Electron. Lett. 19, 554 (1983).
[CrossRef]

Ward, J. F.

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
[CrossRef]

Watjen, J. P.

Weinreich, G.

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Zernike, F.

F. Zernike, Phys. Rev. Lett. 22, 931 (1969).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. E. Niebuhr, Appl. Phys. Lett. 2, 136 (1963).
[CrossRef]

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

S. Y. Wang, D. M. Bloom, D. M. Collins, Appl. Phys. Lett. 42, 190 (1983).
[CrossRef]

T. Y. Chang, N. Van Tran, C. K. N. Patel, Appl. Phys. Lett. 13, 357 (1968).
[CrossRef]

T. J. Bridges, A. R. Strnad, Appl. Phys. Lett. 20, 382 (1972).
[CrossRef]

L. O. Hocker, D. R. Sokoloff, V. Danen, A. Szoke, A. Javan, Appl. Phys. Lett. 12, 401 (1968).
[CrossRef]

Electron. Lett.

S. Y. Wang, D. M. Bloom, Electron. Lett. 19, 554 (1983).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

F. Zernike, Phys. Rev. Lett. 22, 931 (1969).
[CrossRef]

N. Van Tran, C. K. N. Patel, Phys. Rev. Lett. 22, 463 (1969).
[CrossRef]

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, Phys. Rev. Lett. 9, 446 (1962).
[CrossRef]

T. J. Bridges, T. Y. Chang, Phys. Rev. Lett. 22, 811 (1969).
[CrossRef]

Other

Advanced Devices Inc., Los Alamos, New Mexico 87544, specifies response bandwidths from 7 to 10 GHz on its S-100-series pyroelectric detectors. The voltage responsivity, ≳5 μV/W, is flat above 10 μm and below 0.35 μm but unfortunately drops by some 2 orders of magnitude in the visible.

D. P. Schinke, R. G. Smith, A. R. Hartman, in Semiconductor Devices for Optical Communication, Vol. 39, H. Kressel, ed. (Springer-Verlag, New York, 1980), p. 63.
[CrossRef]

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental apparatus: M, mirror; F-P, Fabry–Perot étalon; CU, crystal unit; A, amplifier; D, detector.

Fig. 2
Fig. 2

Microstrip LiTaO3 nonlinear crystal unit (not to scale). All dimensions are in millimeters. See text for legends.

Fig. 3
Fig. 3

Microwave source scan showing the homodyne signal resulting from the microwave generated at ν1 = 3.5 GHz by nonlinear mixing of the dye-laser optical frequencies inside the LiTaO3 crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p 1 ( ν 1 ) = 1 2 j k d i j k ( ν 1 ) E j ( ν 3 ) E k * ( ν 2 ) × exp { i [ 2 π ( ν 3 ν 2 ) t ( k 3 k 2 ) z ] } + c . c .,
P 1 = P 2 P 3 ( μ 0 0 ) 3 / 2 ( 2 π ν 1 ) 2 d 2 2 n 1 n 2 n 3 l 2 a b sin 2 Ψ Ψ 2 .

Metrics