Abstract

Tunable, mode-locked operation of cw Co:MgF2 and Ni:MgF2 lasers has been demonstrated for the first reported time, and autocorrelation measurements of the pulse widths have been made. The Co:MgF2 system has generated stable pulses over wavelengths from 1.65 to 2.01 μm and has produced pulses as short as 34 psec. The Ni:MgF2 laser has operated over the 1.61–1.73-μm range, with pulses as short as 23 psec.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).
    [CrossRef]
  2. L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Appl. Phys Lett. 5, 21 (1964).
    [CrossRef]
  3. P. F. Moulton, A. Mooradian, Appl. Phys. Lett. 35, 838 (1979).
    [CrossRef]
  4. P. F. Moulton, IEEE J. Quantum Electron. QE-18, 1185 (1982).
    [CrossRef]
  5. D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 709 (1970).
    [CrossRef]
  6. S. R. Chinn, Appl. Phys. Lett. 34, 847 (1979).
    [CrossRef]
  7. P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
    [CrossRef]
  8. J. C. Walling, D. F. Heller, “Progress in alexandrite laser technology: active mode-locked performance,” in Proceedings of the International Conference on Lasers ’82, R. C. Powell, ed. (STS, McLean Va., 1982), p. 550.
  9. H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
    [CrossRef]
  10. H. A. Haus, J. Appl. Phys. 51, 4042 (1980).
    [CrossRef]
  11. H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
    [CrossRef]
  12. D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 691 (1970).
  13. D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
    [CrossRef]
  14. Fluorescence spectra for Co:MgF2 and Ni:MgF2 can be found in P. F. Moulton, “Paramagnetic ion lasers,” in Handbook of Laser Science and Technology, M. G. Weber, ed. (CRC, Boca Raton, Fla., 1982), Vol. 1, p. 50.

1982

P. F. Moulton, IEEE J. Quantum Electron. QE-18, 1185 (1982).
[CrossRef]

1980

H. A. Haus, J. Appl. Phys. 51, 4042 (1980).
[CrossRef]

1979

S. R. Chinn, Appl. Phys. Lett. 34, 847 (1979).
[CrossRef]

P. F. Moulton, A. Mooradian, Appl. Phys. Lett. 35, 838 (1979).
[CrossRef]

1977

D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
[CrossRef]

1972

P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
[CrossRef]

H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

1970

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 691 (1970).

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 709 (1970).
[CrossRef]

1964

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Appl. Phys Lett. 5, 21 (1964).
[CrossRef]

1963

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).
[CrossRef]

Bridges, T. J.

P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
[CrossRef]

Burkhardt, E. G.

P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
[CrossRef]

Chinn, S. R.

S. R. Chinn, Appl. Phys. Lett. 34, 847 (1979).
[CrossRef]

Dienes, A.

H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Dietz, R. E.

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Appl. Phys Lett. 5, 21 (1964).
[CrossRef]

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).
[CrossRef]

Guggenheim, H. J.

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Appl. Phys Lett. 5, 21 (1964).
[CrossRef]

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).
[CrossRef]

Haus, H. A.

H. A. Haus, J. Appl. Phys. 51, 4042 (1980).
[CrossRef]

Heller, D. F.

J. C. Walling, D. F. Heller, “Progress in alexandrite laser technology: active mode-locked performance,” in Proceedings of the International Conference on Lasers ’82, R. C. Powell, ed. (STS, McLean Va., 1982), p. 550.

Hercher, M.

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

Ippen, E. P.

H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Johnson, L. F.

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Appl. Phys Lett. 5, 21 (1964).
[CrossRef]

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).
[CrossRef]

Kogelnik, H.

H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 709 (1970).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 691 (1970).

Mooradian, A.

P. F. Moulton, A. Mooradian, Appl. Phys. Lett. 35, 838 (1979).
[CrossRef]

Moulton, P. F.

P. F. Moulton, IEEE J. Quantum Electron. QE-18, 1185 (1982).
[CrossRef]

P. F. Moulton, A. Mooradian, Appl. Phys. Lett. 35, 838 (1979).
[CrossRef]

Fluorescence spectra for Co:MgF2 and Ni:MgF2 can be found in P. F. Moulton, “Paramagnetic ion lasers,” in Handbook of Laser Science and Technology, M. G. Weber, ed. (CRC, Boca Raton, Fla., 1982), Vol. 1, p. 50.

Pike, H. A.

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

Shank, C. V.

H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 691 (1970).

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 709 (1970).
[CrossRef]

Smith, P. W.

P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
[CrossRef]

Walling, J. C.

J. C. Walling, D. F. Heller, “Progress in alexandrite laser technology: active mode-locked performance,” in Proceedings of the International Conference on Lasers ’82, R. C. Powell, ed. (STS, McLean Va., 1982), p. 550.

Wood, O. R.

P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
[CrossRef]

Appl. Phys Lett.

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Appl. Phys Lett. 5, 21 (1964).
[CrossRef]

Appl. Phys. Lett.

P. F. Moulton, A. Mooradian, Appl. Phys. Lett. 35, 838 (1979).
[CrossRef]

S. R. Chinn, Appl. Phys. Lett. 34, 847 (1979).
[CrossRef]

P. W. Smith, T. J. Bridges, E. G. Burkhardt, O. R. Wood, Appl. Phys. Lett. 21, 470 (1972).
[CrossRef]

IEEE J. Quantum Electron.

H. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, IEEE J. Quantum Electron. QE-8, 373 (1972).
[CrossRef]

P. F. Moulton, IEEE J. Quantum Electron. QE-18, 1185 (1982).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 709 (1970).
[CrossRef]

D. J. Kuizenga, A. E. Siegman, IEEE J. Quantum Electron. QE-6, 691 (1970).

J. Appl. Phys.

H. A. Haus, J. Appl. Phys. 51, 4042 (1980).
[CrossRef]

H. A. Pike, M. Hercher, J. Appl. Phys. 41, 4562 (1970).
[CrossRef]

Opt. Commun.

D. J. Kuizenga, Opt. Commun. 22, 156 (1977).
[CrossRef]

Phys. Rev. Lett.

L. F. Johnson, R. E. Dietz, H. J. Guggenheim, Phys. Rev. Lett. 11, 318 (1963).
[CrossRef]

Other

Fluorescence spectra for Co:MgF2 and Ni:MgF2 can be found in P. F. Moulton, “Paramagnetic ion lasers,” in Handbook of Laser Science and Technology, M. G. Weber, ed. (CRC, Boca Raton, Fla., 1982), Vol. 1, p. 50.

J. C. Walling, D. F. Heller, “Progress in alexandrite laser technology: active mode-locked performance,” in Proceedings of the International Conference on Lasers ’82, R. C. Powell, ed. (STS, McLean Va., 1982), p. 550.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of laser cavity used in Co:MgF2 and Ni:MgF2 mode-locking experiments.

Fig. 2
Fig. 2

(a) Plot of pulse width determined from autocorrelation measurements versus wavelength for Co:MgF2 laser. The open and filled symbols represent data from different sets of cavity mirrors. In the region between 1.8 and 1.85 μm, both sets of mirrors had increased transmission, and Gaussian-shaped autocorrelations could not be obtained. (b) Plot of pulse width determined from autocorrelation measurements versus wavelength for Ni:MgF2 laser.

Fig. 3
Fig. 3

Autocorrelation trace from mode-locked Co:MgF2 laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ p = ( 2 ln 2 ) 1 / 2 π 1 Ө m 1 / 2 1 f m 1 / 2 ( g Δ f 2 + 1 Δ f t 2 ) 1 / 4 ,

Metrics