Abstract

Lasing in N2 at 337 nm was achieved in a capacitively coupled discharge device having a cylindrical discharge volume with a length of 50 mm and a diameter of 3 mm. The cylindrical dielectric electrodes provide a nearly constant initial electric field throughout the discharge volume. Laser pulses with a width of 2.5 nsec (FWHM) and an energy of 8 μJ were obtained.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Newman, “XeF* and KrF* waveguide lasers excited by a capacitively coupled discharge,” Appl. Phys. Lett. 33, 501 (1978).
    [CrossRef]
  2. D. B. Cohn, “CO2 laser excited by a preionized transverse discharge through a dielectric,” Appl. Phys. Lett. 37, 771 (1980).
    [CrossRef]
  3. V. Hasson, H. M. von Bergmann, E. G. Jones, “Ultraminiature high-power gas discharge lasers excited through high dielectric constant ceramic material,” Rev. Sci. Instrum. 51, 384 (1980).
    [CrossRef] [PubMed]
  4. J. E. Brandelik, O. P. Breaux, “Simultaneous HF and DF laser excited by a ferroelectric ceramic capacitively coupled discharge,” J. Appl. Phys. 51, 1321 (1980).
    [CrossRef]
  5. D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
    [CrossRef]
  6. D. B. Cohn, “CO2 laser excited by a long pulse capacitively coupled discharge,” IEEE J. Quantum Electron. QE-17, 438 (1981).
    [CrossRef]
  7. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1968), Chap. 12.
  8. C. S. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, London, 1974), Chap. 6.

1981 (2)

D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
[CrossRef]

D. B. Cohn, “CO2 laser excited by a long pulse capacitively coupled discharge,” IEEE J. Quantum Electron. QE-17, 438 (1981).
[CrossRef]

1980 (3)

D. B. Cohn, “CO2 laser excited by a preionized transverse discharge through a dielectric,” Appl. Phys. Lett. 37, 771 (1980).
[CrossRef]

V. Hasson, H. M. von Bergmann, E. G. Jones, “Ultraminiature high-power gas discharge lasers excited through high dielectric constant ceramic material,” Rev. Sci. Instrum. 51, 384 (1980).
[CrossRef] [PubMed]

J. E. Brandelik, O. P. Breaux, “Simultaneous HF and DF laser excited by a ferroelectric ceramic capacitively coupled discharge,” J. Appl. Phys. 51, 1321 (1980).
[CrossRef]

1978 (1)

L. A. Newman, “XeF* and KrF* waveguide lasers excited by a capacitively coupled discharge,” Appl. Phys. Lett. 33, 501 (1978).
[CrossRef]

Brandelik, J. E.

J. E. Brandelik, O. P. Breaux, “Simultaneous HF and DF laser excited by a ferroelectric ceramic capacitively coupled discharge,” J. Appl. Phys. 51, 1321 (1980).
[CrossRef]

Breaux, O. P.

J. E. Brandelik, O. P. Breaux, “Simultaneous HF and DF laser excited by a ferroelectric ceramic capacitively coupled discharge,” J. Appl. Phys. 51, 1321 (1980).
[CrossRef]

Brink, D. J.

D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
[CrossRef]

Cohn, D. B.

D. B. Cohn, “CO2 laser excited by a long pulse capacitively coupled discharge,” IEEE J. Quantum Electron. QE-17, 438 (1981).
[CrossRef]

D. B. Cohn, “CO2 laser excited by a preionized transverse discharge through a dielectric,” Appl. Phys. Lett. 37, 771 (1980).
[CrossRef]

Hasson, V.

V. Hasson, H. M. von Bergmann, E. G. Jones, “Ultraminiature high-power gas discharge lasers excited through high dielectric constant ceramic material,” Rev. Sci. Instrum. 51, 384 (1980).
[CrossRef] [PubMed]

Jones, E. G.

D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
[CrossRef]

V. Hasson, H. M. von Bergmann, E. G. Jones, “Ultraminiature high-power gas discharge lasers excited through high dielectric constant ceramic material,” Rev. Sci. Instrum. 51, 384 (1980).
[CrossRef] [PubMed]

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1968), Chap. 12.

Newman, L. A.

L. A. Newman, “XeF* and KrF* waveguide lasers excited by a capacitively coupled discharge,” Appl. Phys. Lett. 33, 501 (1978).
[CrossRef]

Salamon, T. I.

D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
[CrossRef]

Schmieder, D.

D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
[CrossRef]

von Bergmann, H. M.

V. Hasson, H. M. von Bergmann, E. G. Jones, “Ultraminiature high-power gas discharge lasers excited through high dielectric constant ceramic material,” Rev. Sci. Instrum. 51, 384 (1980).
[CrossRef] [PubMed]

Willett, C. S.

C. S. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, London, 1974), Chap. 6.

Appl. Phys. Lett. (2)

L. A. Newman, “XeF* and KrF* waveguide lasers excited by a capacitively coupled discharge,” Appl. Phys. Lett. 33, 501 (1978).
[CrossRef]

D. B. Cohn, “CO2 laser excited by a preionized transverse discharge through a dielectric,” Appl. Phys. Lett. 37, 771 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. B. Cohn, “CO2 laser excited by a long pulse capacitively coupled discharge,” IEEE J. Quantum Electron. QE-17, 438 (1981).
[CrossRef]

J. Appl. Phys. (1)

J. E. Brandelik, O. P. Breaux, “Simultaneous HF and DF laser excited by a ferroelectric ceramic capacitively coupled discharge,” J. Appl. Phys. 51, 1321 (1980).
[CrossRef]

Opt. Commun. (1)

D. Schmieder, D. J. Brink, T. I. Salamon, E. G. Jones, “A high pressure 585.3-nm neon hydrogen laser,” Opt. Commun. 36, 223 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Hasson, H. M. von Bergmann, E. G. Jones, “Ultraminiature high-power gas discharge lasers excited through high dielectric constant ceramic material,” Rev. Sci. Instrum. 51, 384 (1980).
[CrossRef] [PubMed]

Other (2)

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1968), Chap. 12.

C. S. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon, London, 1974), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Cross-sectional illustration of the laser device. (b) Equivalent circuit of the capacitively coupled laser and the external circuit.

Fig. 2
Fig. 2

Temporal behavior of the spontaneous emission from N2 (180 mbar) and He (1 bar) and of the laser pulse.

Fig. 3
Fig. 3

Peak power of the laser pulse achieved in N2 and N2–He mixtures with He as a function of fill pressure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E = Q 2 / 2 { [ C P ( 0 ) ] 1 [ C P ( t ) + C C / 2 ] 1 } ,

Metrics