Abstract

An effective cutoff wavelength λceff in single-mode fibers is defined, and a simple interferometric method for its determination is demonstrated. This method is essentially independent of launching conditions and differential mode attenuation. At λceff the power fraction of the LP11 mode in the core is less than 1/e.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Murakami, A. Kawana, H. Tsuchiya, “Cut-off wavelength measurements for single-mode optical fibers,” Appl. Opt. 18, 1101 (1979).
    [CrossRef] [PubMed]
  2. C. A. Millar, “Direct method of determining equivalent-step-index profiles for monomode fibers,” Electron. Lett. 17, 458 (1981).
    [CrossRef]
  3. Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
    [CrossRef]
  4. Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
    [CrossRef]
  5. P. Spano, G. De Marchis, G. Grosso, “Coherence properties and cutoff wavelength determination in dielectric waveguides,” Appl. Opt. 22, 1915 (1983).
    [CrossRef] [PubMed]
  6. W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
    [CrossRef]
  7. E. Brinkmeyer, “Profile-independent representation of near- and far-field characteristics of single-mode fibers and its use for the determination of fiber parameters,” presented at Fifth European Conference on Optical Communication, Amsterdam, The Netherlands, 1979.
  8. K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive-index profiles,” Opt. Quantum Electron. 11, 185 (1979).
    [CrossRef]
  9. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  10. D. Krumbholz, E. Brinkmeyer, E. G. Neumann: “Core/cladding power distribution, propagation constant, and group delay: a simple relation for power-law graded-index fibers,” J. Opt. Soc. Am. 70, 179 (1980).
    [CrossRef]
  11. H. G. Unger, Planar Optical Waveguides and Fibres (Clarendon, Oxford, 1977).

1983

1981

C. A. Millar, “Direct method of determining equivalent-step-index profiles for monomode fibers,” Electron. Lett. 17, 458 (1981).
[CrossRef]

Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

1980

1979

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive-index profiles,” Opt. Quantum Electron. 11, 185 (1979).
[CrossRef]

Y. Murakami, A. Kawana, H. Tsuchiya, “Cut-off wavelength measurements for single-mode optical fibers,” Appl. Opt. 18, 1101 (1979).
[CrossRef] [PubMed]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
[CrossRef]

1976

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
[CrossRef]

1971

Brinkmeyer, E.

D. Krumbholz, E. Brinkmeyer, E. G. Neumann: “Core/cladding power distribution, propagation constant, and group delay: a simple relation for power-law graded-index fibers,” J. Opt. Soc. Am. 70, 179 (1980).
[CrossRef]

E. Brinkmeyer, “Profile-independent representation of near- and far-field characteristics of single-mode fibers and its use for the determination of fiber parameters,” presented at Fifth European Conference on Optical Communication, Amsterdam, The Netherlands, 1979.

De Marchis, G.

Dyott, R. B.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
[CrossRef]

Gloge, D.

Grosso, G.

Kato, Y.

Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
[CrossRef]

Kawana, A.

Kitayama, L.

Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Krumbholz, D.

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
[CrossRef]

Millar, C. A.

C. A. Millar, “Direct method of determining equivalent-step-index profiles for monomode fibers,” Electron. Lett. 17, 458 (1981).
[CrossRef]

Murakami, Y.

Nakahara, M.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
[CrossRef]

Neumann, E. G.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
[CrossRef]

Seikai, S.

Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Spano, P.

Tokuda, M.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
[CrossRef]

Tsuchiya, H.

Uchida, N.

Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
[CrossRef]

Unger, H. G.

H. G. Unger, Planar Optical Waveguides and Fibres (Clarendon, Oxford, 1977).

White, K. I.

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive-index profiles,” Opt. Quantum Electron. 11, 185 (1979).
[CrossRef]

Appl. Opt.

Electron. Lett.

C. A. Millar, “Direct method of determining equivalent-step-index profiles for monomode fibers,” Electron. Lett. 17, 458 (1981).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, “New method for measuring V-value of a single-mode optical fiber,” Electron. Lett. 12, 669 (1979); W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, “Measurement of normalized frequency in single-mode optical fibers,” Electron. Lett. 13, 133 (1977).
[CrossRef]

IEE J. Microwave Opt. Acoust.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, “Determination of core diameter and refractive index difference of single-mode fibers by observation of far-yield pattern, IEE J. Microwave Opt. Acoust. MOA-1, 13 (1976).
[CrossRef]

IEEE J. Quantum Electron.

Y. Kato, L. Kitayama, S. Seikai, N. Uchida, “Effective cutoff wavelength of the LP11-mode in single-mode fiber cables,” IEEE J. Quantum Electron. QE-17, 35 (1981).
[CrossRef]

J. Opt. Soc. Am.

Opt. Quantum Electron.

K. I. White, “Practical application of the refracted near-field technique for the measurement of optical fiber refractive-index profiles,” Opt. Quantum Electron. 11, 185 (1979).
[CrossRef]

Other

H. G. Unger, Planar Optical Waveguides and Fibres (Clarendon, Oxford, 1977).

E. Brinkmeyer, “Profile-independent representation of near- and far-field characteristics of single-mode fibers and its use for the determination of fiber parameters,” presented at Fifth European Conference on Optical Communication, Amsterdam, The Netherlands, 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic experimental setup.

Fig. 2
Fig. 2

Detected power versus wavelength (fiber A: L = 6.3 cm).

Fig. 3
Fig. 3

Wavelength dependence of ψ(λ) for three different fibers. For fibers A and B the fitting curves are given according to ψ(λ) = ψ0 exp(−μλ) + ψmin. (Fiber A: ψ0 = 3.88 × 1011, ψmin = 257.7, μ = 36.33 μm−1; fiber B: ψ0 = 2.01 × 109, ψmin = 258.8, μ = 26.67 μm−1).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = ( β 01 β 11 ) L ,
d ( Δ ϕ ) d λ = 2 π c λ 2 ( d β 01 d ω L d β 11 d ω L ) .
B = β k n c l k n c k n c l ,
d ( Δ ϕ ) d λ = 2 π λ 2 Δ n [ d ( V B 01 ) d V d ( V B 11 ) d V ] L ,
ψ ( λ ) = δ λ L λ 2 = 1 Δ n [ d ( V B 01 ) d V d ( V B 11 ) d V ] = 1 Δ n ( τ 01 τ 11 ) .
τ 11 ( λ c eff ) / τ 01 = 1 / e .
ψ ( λ c eff ) = ψ min ( 1 1 / e ) ,
ρ core ( 11 ) = α + 2 2 α d ( V B 11 ) d V + α 2 2 α B 11 ,
1 / ( 2 e ) < ρ core ( 11 ) ( λ c eff ) < 1 / e .

Metrics