Abstract

By incorporating a length of single-mode, polarization-preserving fiber into the feedback loop of a mode-locked color-center laser (λ ~ 1.4–1.6 μm), we have created a device that we call the soliton laser. Pulse width (2.0 to 0.21 psec obtained to date) is determined by fiber length, in accordance with N = 2 soliton behavior. Production of <50-fsec-wide pulses is indicated for compression in an additional, external fiber.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
    [Crossref]
  2. R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
    [Crossref] [PubMed]
  3. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
    [Crossref] [PubMed]
  4. L. F. Mollenauer, N. D. Vieira, L. Szeto, “Mode locking by synchronous pumping using a gain medium with microsecond decay times,” Opt. Lett. 7, 414 (1982).
    [Crossref] [PubMed]
  5. The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
    [Crossref]
  6. R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
    [Crossref]
  7. Such wavelength tuning by means of fiber group-velocity dispersion has already been demonstrated in other lasers. See R. H. Stolen, C. Lin, R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30, 340 (1977).
    [Crossref]

1983 (3)

R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
[Crossref] [PubMed]

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

1982 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

1977 (1)

Such wavelength tuning by means of fiber group-velocity dispersion has already been demonstrated in other lasers. See R. H. Stolen, C. Lin, R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30, 340 (1977).
[Crossref]

1972 (1)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[Crossref]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Howard, R. E.

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

Ippen, E. P.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[Crossref]

Jain, R. K.

Such wavelength tuning by means of fiber group-velocity dispersion has already been demonstrated in other lasers. See R. H. Stolen, C. Lin, R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30, 340 (1977).
[Crossref]

Lin, C.

Such wavelength tuning by means of fiber group-velocity dispersion has already been demonstrated in other lasers. See R. H. Stolen, C. Lin, R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30, 340 (1977).
[Crossref]

MacChesney, J. B.

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
[Crossref] [PubMed]

R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, N. D. Vieira, L. Szeto, “Mode locking by synchronous pumping using a gain medium with microsecond decay times,” Opt. Lett. 7, 414 (1982).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Sears, F. M.

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

Simpson, J. R.

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

Stolen, R. H.

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
[Crossref] [PubMed]

R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Such wavelength tuning by means of fiber group-velocity dispersion has already been demonstrated in other lasers. See R. H. Stolen, C. Lin, R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30, 340 (1977).
[Crossref]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[Crossref]

Szeto, L.

Tomlinson, W. J.

R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
[Crossref] [PubMed]

Vieira, N. D.

Appl. Phys. Lett. (2)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[Crossref]

Such wavelength tuning by means of fiber group-velocity dispersion has already been demonstrated in other lasers. See R. H. Stolen, C. Lin, R. K. Jain, “A time-dispersion-tuned fiber Raman oscillator,” Appl. Phys. Lett. 30, 340 (1977).
[Crossref]

J. Lightwave Technol. (1)

The polarization-preserving fiber is similar in structure to recently reported single-polarization fibers; see J. R. Simpson, R. H. Stolen, F. M. Sears, J. B. MacChesney, R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. LT-1, 370 (1983).
[Crossref]

Opt. Lett (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett 8, 289 (1983).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the soliton laser. Typical reflectivities: M0 ~ 70%, S ~ 50%; (M1, M2, M3 ~ 100%). Birefringence plates: sapphire, 1 and 4 mm thick; only the thinner was used for τ < 0.5 psec. (For overall description, see text.)

Fig. 2
Fig. 2

Behavior with propagation of the N = 1 and N = 2 solitons.

Fig. 3
Fig. 3

The quantities P1, P2, P ˆ, and z0 graphed as functions of 1/τ. The points τ1 and τ2 are potential stable operating points for the particular P ˆ curve shown, and (τ2 only) for 2L = 25m. (See text.)

Fig. 4
Fig. 4

Solid line: ½ z0(τ) from Eq. (2); actual fiber lengths L, circled points. Dashed line: P2(τ) from 4 × Eq. (1), assuming Aeff = 1.11 Ageom, λ = 1.5 μm, n2 = 3.2 × 10−16 cm2/W, and |D| ~ 15 psec/nm/km; solid points, P ˆ estimated from measured time-average fiber power and Eq. (3). (The relative powers here are more meaningful than the absolute ones.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 1 = ( 0 . 776 λ vac 3 π 2 c n 2 ) | D | A eff τ 2 ,
z 0 = 0 . 322 ( π 2 c λ vac 2 ) π 2 | D | .
P ˆ = 0 . 88 η P ¯ T τ ,

Metrics