Abstract

Complete statistical randomization of the direction of propagation of light trapped in semiconductor films can result in a large absorption enhancement. We have employed a calorimetric technique, photothermal deflection spectroscopy, to monitor the absorption of a-SiHx films textured by the natural lithography process. The observed enhancement factors, as high as 11.5, are consistent with full internal phase-space randomization of the incoming light.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. St. John, U.S. Patent No. 3,487,223(December30, 1969).
  2. E. Yablonovitch, G. Cody, IEEE Trans. Electron Devices ED-29, 300, (1982).
    [CrossRef]
  3. T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
    [CrossRef]
  4. H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
    [CrossRef]
  5. H. W. Deckman, J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
    [CrossRef]
  6. W. B. Jackson, N. M. Amer, A. C. Baccara, D. Fournier, Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  7. G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
    [CrossRef]
  8. E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982).
    [CrossRef]

1983 (2)

T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
[CrossRef]

H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

1982 (3)

H. W. Deckman, J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

E. Yablonovitch, G. Cody, IEEE Trans. Electron Devices ED-29, 300, (1982).
[CrossRef]

E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982).
[CrossRef]

1981 (1)

1980 (1)

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Abeles, B.

T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
[CrossRef]

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Amer, N. M.

Baccara, A. C.

Brooks, B.

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Cebulka, J. M.

T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
[CrossRef]

Cody, G.

E. Yablonovitch, G. Cody, IEEE Trans. Electron Devices ED-29, 300, (1982).
[CrossRef]

Cody, G. D.

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Deckman, H.

H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Deckman, H. W.

H. W. Deckman, J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

Dunsmuir, J. H.

H. W. Deckman, J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

Fournier, D.

Jackson, W. B.

Pelz, J.

T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
[CrossRef]

St. John, A. E.

A. E. St. John, U.S. Patent No. 3,487,223(December30, 1969).

Stephens, R. B.

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Tiedje, T.

T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
[CrossRef]

Witzke, H.

H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Wronski, C.

H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Wronski, C. R.

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Yablonovitch, E.

H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

E. Yablonovitch, G. Cody, IEEE Trans. Electron Devices ED-29, 300, (1982).
[CrossRef]

E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Tiedje, B. Abeles, J. M. Cebulka, J. Pelz, Appl. Phys. Lett. 42, 712 (1983).
[CrossRef]

H. Deckman, C. Wronski, H. Witzke, E. Yablonovitch, Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

H. W. Deckman, J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

IEEE Trans. Electron Devices (1)

E. Yablonovitch, G. Cody, IEEE Trans. Electron Devices ED-29, 300, (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

Solar Cells (1)

G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, B. Brooks, Solar Cells 2, 227 (1980).
[CrossRef]

Other (1)

A. E. St. John, U.S. Patent No. 3,487,223(December30, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of normalized absorption probability for flat and textured 0.85-μm-thick a-SiHx films. The texture was produced by depositing the film upon a quartz substrate patterned with a densely packed random array of 0.8-μm-diameter, 0.24-μm-high microcolumnar posts. Solid line shows behavior expected if light is completely internally randomized by the texture. The enhancement factor E(α) for the textured films is also shown.

Fig. 2
Fig. 2

A plot of enhancement factor E(α) versus single-pass absorption for a-SiHx films textured with 0.5- and 0.8-μm-diameter microcolumnar posts that were 0.24 μm high. Solid line, which intercepts the ordinate at 2(n1/n2)2, shows behavior expected if light is completely randomized. This type of graph is a universal curve, which is independent of the material used.

Fig. 3
Fig. 3

Dependence of randomization fraction β on microcolumnar post diameter, holding post height constant in the narrow range of 1400–2200 Å. The solid line is simply a smooth curve to guide the eye.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F en = ( 1 e 2 α l ) T 1 e 2 α l + ( n 2 2 / n 1 2 ) T e 2 α l .
E ( α ) = F exp / F flat ,
F flat = T ( 1 e α l ) 1 ( 1 T ) e α l
F exp = β F en + ( 1 β ) F flat .
β = E ( 0 ) 1 2 ( n 1 2 / n 2 2 ) 1 ,

Metrics