Abstract

Preliminary results on the stabilization of a 1772-MHz oscillator to a resonance Raman transition in an atomic beam of sodium are presented. Short-term stability of 5.6 × 10−11 (τ = 100 sec) for a 15-cm Ramsey interaction-region separation has been achieved. Sources of frequency drift are briefly discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
    [Crossref]
  2. J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298 (1981).
    [Crossref] [PubMed]
  3. N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1963).
  4. Laser jitter is of the order of 1 MHz rms for our present setup.
  5. Andrew Corporation polarization-maintaining fiber.
  6. A modulation amplitude of approximately 4 kHz (peak to peak) was used to maximize the discriminant amplitude.
  7. Hewlett-Packard Allan variance setup.
  8. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221 (1966).
    [Crossref]
  9. R. F. Lacey, A. L. Helgesson, J. H. Holloway, “Short term stability of passive atomic frequency standards,” Proc. IEEE 54, 170 (1966).
    [Crossref]
  10. A. G. Mungall, H. Daams, “Cesium beam frequency standard cavity design,” Metrologia 6, 60 (1970).
    [Crossref]
  11. A. Brillet, “Evaluation of the light shifts in an optically pumped cesium beam frequency standard,” Metrologia 17, 147 (1981).
    [Crossref]
  12. D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
    [Crossref]
  13. J. V. Prodan, W. D. Phillips, H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149 (1982).
    [Crossref]

1982 (2)

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

J. V. Prodan, W. D. Phillips, H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149 (1982).
[Crossref]

1981 (2)

1977 (1)

D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
[Crossref]

1970 (1)

A. G. Mungall, H. Daams, “Cesium beam frequency standard cavity design,” Metrologia 6, 60 (1970).
[Crossref]

1966 (2)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221 (1966).
[Crossref]

R. F. Lacey, A. L. Helgesson, J. H. Holloway, “Short term stability of passive atomic frequency standards,” Proc. IEEE 54, 170 (1966).
[Crossref]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221 (1966).
[Crossref]

Allen, D. W.

D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
[Crossref]

Brillet, A.

A. Brillet, “Evaluation of the light shifts in an optically pumped cesium beam frequency standard,” Metrologia 17, 147 (1981).
[Crossref]

Daams, H.

A. G. Mungall, H. Daams, “Cesium beam frequency standard cavity design,” Metrologia 6, 60 (1970).
[Crossref]

Ezekiel, S.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298 (1981).
[Crossref] [PubMed]

Glaze, D. J.

D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
[Crossref]

Helgesson, A. L.

R. F. Lacey, A. L. Helgesson, J. H. Holloway, “Short term stability of passive atomic frequency standards,” Proc. IEEE 54, 170 (1966).
[Crossref]

Hellwig, H.

D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
[Crossref]

Hemmer, P. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

Holloway, J. H.

R. F. Lacey, A. L. Helgesson, J. H. Holloway, “Short term stability of passive atomic frequency standards,” Proc. IEEE 54, 170 (1966).
[Crossref]

Jarvis, S.

D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
[Crossref]

Lacey, R. F.

R. F. Lacey, A. L. Helgesson, J. H. Holloway, “Short term stability of passive atomic frequency standards,” Proc. IEEE 54, 170 (1966).
[Crossref]

Leiby, C. C.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298 (1981).
[Crossref] [PubMed]

Metcalf, H.

J. V. Prodan, W. D. Phillips, H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149 (1982).
[Crossref]

Mungall, A. G.

A. G. Mungall, H. Daams, “Cesium beam frequency standard cavity design,” Metrologia 6, 60 (1970).
[Crossref]

Phillips, W. D.

J. V. Prodan, W. D. Phillips, H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149 (1982).
[Crossref]

Picard, R. H.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298 (1981).
[Crossref] [PubMed]

Prodan, J. V.

J. V. Prodan, W. D. Phillips, H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149 (1982).
[Crossref]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1963).

Thomas, J. E.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298 (1981).
[Crossref] [PubMed]

Willis, C. R.

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298 (1981).
[Crossref] [PubMed]

Metrologia (3)

A. G. Mungall, H. Daams, “Cesium beam frequency standard cavity design,” Metrologia 6, 60 (1970).
[Crossref]

A. Brillet, “Evaluation of the light shifts in an optically pumped cesium beam frequency standard,” Metrologia 17, 147 (1981).
[Crossref]

D. J. Glaze, H. Hellwig, D. W. Allen, S. Jarvis, “NBS-4 and NBS-6: the NBS Primary Frequency Standards,” Metrologia 13, 17 (1977).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

J. V. Prodan, W. D. Phillips, H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149 (1982).
[Crossref]

J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, “Observation of Ramsey fringes using a stimulated resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867 (1982).
[Crossref]

Proc. IEEE (2)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221 (1966).
[Crossref]

R. F. Lacey, A. L. Helgesson, J. H. Holloway, “Short term stability of passive atomic frequency standards,” Proc. IEEE 54, 170 (1966).
[Crossref]

Other (5)

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1963).

Laser jitter is of the order of 1 MHz rms for our present setup.

Andrew Corporation polarization-maintaining fiber.

A modulation amplitude of approximately 4 kHz (peak to peak) was used to maximize the discriminant amplitude.

Hewlett-Packard Allan variance setup.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Stimulated resonance Raman system.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

a, Ramsey fringes corresponding to L = 15 cm. Scan rate, 330 Hz sec; τ = 10 msec; peak-to-valley amplitude ≈ 1 pA; central fringe width FWHM, ≈ 2.6 kHz. b, Discriminant obtained by frequency modulation. Scan rate, 330 Hz/sec; τ = 100 msec.

Fig. 4
Fig. 4

Fractional frequency stability σy (τ) versus averaging time τ(sec).

Metrics