Abstract

We present experimental evidence showing that the period of the rippled surface structure induced on germanium by 1.06-μm laser pulses undergoes a discontinuous shift above a certain threshold intensity. The measured shift, as a function of the angle of incidence of the damaging beam, is quantitatively interpreted as a transition between a regime of inhomogeneous melting controlled by radiation-remnant field structures and a regime of ripple formation involving surface plasmons in an optically thick layer of liquid, metallic germanium formed at the surface.

© 1983 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser induced periodic surface structure formation in germanium by strong field mid IR laser solid interaction at oblique incidence

Drake R. Austin, Kyle R. P. Kafka, Simeon Trendafilov, Gennady Shvets, Hui Li, Allen Y. Yi, Urszula B. Szafruga, Zhou Wang, Yu Hang Lai, Cosmin I. Blaga, Louis F. DiMauro, and Enam A. Chowdhury
Opt. Express 23(15) 19522-19534 (2015)

High resolution imaging studies into the formation of laser-induced periodic surface structures

Noel C. Kerr, S. E. Clark, and David C. Emmony
Appl. Opt. 28(17) 3718-3724 (1989)

Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium

Chandra S.R. Nathala, Ali Ajami, Andrey A. Ionin, Sergey I. Kudryashov, Sergey V Makarov, Thomas Ganz, Andreas Assion, and Wolfgang Husinsky
Opt. Express 23(5) 5915-5929 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription