Abstract

Semiclassical calculations of the signal-to-noise density ratio for a homodyne/heterodyne receiver utilizing two detectors are made. These calculations show that excess intensity noise in the local oscillator can be canceled and need not degrade the performance of the receiver. An experimental demonstration of excess-noise cancellation is reported.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., V. W. S. Chan, Proc. Soc. Photo-Opt. Instrum. Eng. 295, 10 (1981); Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17919 (1981).
    [CrossRef]
  2. H. van de Stadt, Astron. Astrophys. 36, 341 (1974).
  3. B. M. Oliver, Proc. IRE 49, 1960 (1961).
  4. H. P. Yuen, V. W. S. Chan, Opt. Lett. 8, 177 (1983).
    [CrossRef] [PubMed]
  5. T. Waite, Proc. IEEE 54, 334 (1966).
    [CrossRef]
  6. R. H. Dicke, Rev. Sci. Instrum. 17, 268 (1946).
    [CrossRef] [PubMed]
  7. T. K. Yee, V. W. S. Chan, G. L. Abbas, presented at Topical Meeting on Optical Fiber Communication, New Orleans, Louisiana, 1983.

1983 (1)

1981 (1)

See, e.g., V. W. S. Chan, Proc. Soc. Photo-Opt. Instrum. Eng. 295, 10 (1981); Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17919 (1981).
[CrossRef]

1974 (1)

H. van de Stadt, Astron. Astrophys. 36, 341 (1974).

1966 (1)

T. Waite, Proc. IEEE 54, 334 (1966).
[CrossRef]

1961 (1)

B. M. Oliver, Proc. IRE 49, 1960 (1961).

1946 (1)

R. H. Dicke, Rev. Sci. Instrum. 17, 268 (1946).
[CrossRef] [PubMed]

Abbas, G. L.

T. K. Yee, V. W. S. Chan, G. L. Abbas, presented at Topical Meeting on Optical Fiber Communication, New Orleans, Louisiana, 1983.

Chan, V. W. S.

H. P. Yuen, V. W. S. Chan, Opt. Lett. 8, 177 (1983).
[CrossRef] [PubMed]

See, e.g., V. W. S. Chan, Proc. Soc. Photo-Opt. Instrum. Eng. 295, 10 (1981); Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17919 (1981).
[CrossRef]

T. K. Yee, V. W. S. Chan, G. L. Abbas, presented at Topical Meeting on Optical Fiber Communication, New Orleans, Louisiana, 1983.

Dicke, R. H.

R. H. Dicke, Rev. Sci. Instrum. 17, 268 (1946).
[CrossRef] [PubMed]

Oliver, B. M.

B. M. Oliver, Proc. IRE 49, 1960 (1961).

van de Stadt, H.

H. van de Stadt, Astron. Astrophys. 36, 341 (1974).

Waite, T.

T. Waite, Proc. IEEE 54, 334 (1966).
[CrossRef]

Yee, T. K.

T. K. Yee, V. W. S. Chan, G. L. Abbas, presented at Topical Meeting on Optical Fiber Communication, New Orleans, Louisiana, 1983.

Yuen, H. P.

Astron. Astrophys. (1)

H. van de Stadt, Astron. Astrophys. 36, 341 (1974).

Opt. Lett. (1)

Proc. IEEE (1)

T. Waite, Proc. IEEE 54, 334 (1966).
[CrossRef]

Proc. IRE (1)

B. M. Oliver, Proc. IRE 49, 1960 (1961).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

See, e.g., V. W. S. Chan, Proc. Soc. Photo-Opt. Instrum. Eng. 295, 10 (1981); Y. Yamamoto, T. Kimura, IEEE J. Quantum Electron. QE-17919 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

R. H. Dicke, Rev. Sci. Instrum. 17, 268 (1946).
[CrossRef] [PubMed]

Other (1)

T. K. Yee, V. W. S. Chan, G. L. Abbas, presented at Topical Meeting on Optical Fiber Communication, New Orleans, Louisiana, 1983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Yuen–Chan double-detector receiver.

Fig. 2
Fig. 2

Block diagram of the apparatus used to measure excess-intensity noise reduction.

Fig. 3
Fig. 3

Experimental data showing suppression of excess-intensity noise with the Yuen–Chan double-detector receiver.

Fig. 4
Fig. 4

Experimental data showing effect of a relative difference in path lengths to the two detectors (T = 15.4 nsec = 1/65 MHz).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

SNDR = | S | 2 / A 2 η 1 ( η 2 η 1 A ) 2 ( 1 ) + η 2 ( η 2 η 1 A ) 2 + β [ η 2 ( 1 ) + A η 1 ] 2 ( η 2 A η 1 ) 2 ( 1 )
β = INTENSITY NOISE POWER DENSITY QUANTUM NOISE POWER DENSITY 1 ,
A opt = 1 + η 2 β 1 + η 1 β × 1 .
SNDR = | S | 2 / ( 1 + η 2 β ) 2 ( 1 ) η 1 + ( 1 + η 1 β ) η 2 [ ( 1 + η 2 β ) ( 1 ) η 1 + ( 1 + η 1 β ) η 2 ] 2 + β × ( η 2 η 1 ) 2 ( 1 ) [ ( 1 + η 2 β ) ( 1 ) η 1 + ( 1 + η 1 β ) η 2 ] 2 .
BSP 2 BSP 1 = [ ( η 1 + η 2 ) η 1 + ( 1 ) η 2 ] 2 .
ENPD 2 ENPD 1 = [ η 1 η 2 ( 1 ) η 1 + η 2 ( 1 ) ] 2 .
BSP 2 BSP 1 = + 0 . 4 dB , ENPD 2 ENPD 1 = 14 dB .
BSP 2 BSP 1 = + 0 . 8 dB , ENPD 2 ENPD 1 = 20 dB .

Metrics