Abstract

We report the first observation to our knowledge of a sharp minimum in the attenuated total reflectivity of a thin metal film between index-matching layers. The resonance is due to the excitation of the long-range surface-plasmon mode on both sides of the thin metal films, as originally discussed by Sarid [Phys. Rev. Lett. 47, 1927 (1981)]. The angular widths of the observed resonance in silver and aluminum films are both reduced by over an order of magnitude relative to that associated with the Kretschmann excited mode.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sarid, “Long-range surface plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927 (1981).
    [CrossRef]
  2. D. Sarid et al., “Optical field enhancement by long-range surface-plasma waves,” Appl. Opt. 21, 3993 (1982).
    [CrossRef] [PubMed]
  3. G. I. Stegeman, J. J. Burke, D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett. 41, 906 (1982).
    [CrossRef]
  4. R. T. Deck, D. Sarid, “Enhancement of second-harmonic generation by coupling to long-range surface plasmons,” J. Opt. Soc. Am. 72, 1613 (1982).
    [CrossRef]
  5. D. Sarid, R. T. Deck, J. J. Fasano, “Enhanced nonlinearity of the propagation constant of a long-range surface-plasma wave,” J. Opt. Soc. Am. 72, 1345 (1982).
    [CrossRef]
  6. G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1927 (1977); G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. Thesis (University of Toronto, Toronto, Canada, 1977).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).
  8. R. T. Deck, University of Toledo, Toledo, Ohio 43606 (personal communication).
  9. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  10. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313 (1971).
    [CrossRef]
  11. D. E. Gray, ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

1982 (4)

1981 (1)

D. Sarid, “Long-range surface plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

1977 (1)

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1927 (1977); G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. Thesis (University of Toronto, Toronto, Canada, 1977).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313 (1971).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Burke, J. J.

G. I. Stegeman, J. J. Burke, D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Deck, R. T.

Fasano, J. J.

Hall, D. G.

G. I. Stegeman, J. J. Burke, D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1927 (1977); G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. Thesis (University of Toronto, Toronto, Canada, 1977).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313 (1971).
[CrossRef]

Sarid, D.

Scott, G. D.

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1927 (1977); G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. Thesis (University of Toronto, Toronto, Canada, 1977).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, J. J. Burke, D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. I. Stegeman, J. J. Burke, D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett. 41, 906 (1982).
[CrossRef]

J. Opt. Soc. Am. (2)

Phys. Rev. B (2)

G. J. Kovacs, G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1927 (1977); G. J. Kovacs, “Optical excitation of resonant electromagnetic oscillations in thin films,” Ph.D. Thesis (University of Toronto, Toronto, Canada, 1977).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313 (1971).
[CrossRef]

Other (3)

D. E. Gray, ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964).

R. T. Deck, University of Toledo, Toledo, Ohio 43606 (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Reflectance from multilayered system consisting of SF-59 prism–index-matching liquid layer–metal film–index-matched fused-silica substrate versus interior angle of incidence. The metal film is silver; d2 is the thickness of the liquid layer, and d3 is the thickness of the metal film. (a) Kretschmann mode, d2 = 100 Å and d3 = 505 Å; (b) coupled symmetric and antisymmetric modes, d2 = 5000 Å and d3 = 505 Å; (c) long-range surface-plasmon mode, d2 = 12 000 Å and d3 = 170 Å. Note change in angular scale.

Fig. 2
Fig. 2

Same configuration as given in Fig. 1 but with an aluminum metal film. Long-range surface-plasmon mode, d2 = 8600 Å and d3 = 145 Å. Note angular scale.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R 1234 = r 12 + R 234 exp ( i 2 k 2 z d 2 ) 1 + r 12 R 234 exp ( i 2 k 2 z d 2 ) ,
R 234 = r 23 + r 34 exp ( i 2 k 3 z d 3 ) 1 + r 23 r 34 exp ( i 2 k 3 z d 3 ) .
r i j = j cos θ i i cos θ j j cos θ i + i cos θ j
k i z = ω c ( i 1 sin 2 θ 1 ) 1 / 2 .

Metrics