Abstract

An “all-optical” approach for the realization of adaptive optical systems potentially containing in excess of a million spatial-resolution elements is reported. A phase-measurement and -compensation technique called an interference phase loop is employed in conjunction with a monolithic optically addressed spatial light modulator (SLM). Wave-front phase compensation and shaping, and the ability to ignore amplitude fluctuations and compensate phase in real time over multiple π radians of dynamic range, were demonstrated in two discrete-channel laboratory test systems containing one and nineteen resolution elements. All-optical phase compensation with a monolithic SLM was also successfully demonstrated.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Shapiro, C. Warde, Opt. Eng. 20, 1 (1981).
  2. J. W. Hardy, Proc. IEEE 66, 651 (1978).
    [CrossRef]
  3. A. D. Fisher, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1981).
  4. T. R. O’Meara, Opt. Eng. 21, 231 (1982).
  5. A. D. Fisher, C. Warde, Opt. Lett. 4, 131 (1979).
    [CrossRef] [PubMed]
  6. C. Warde, A. M. Weiss, A. D. Fisher, J. I. Thackara, Appl. Opt. 20, 2066 (1981).
    [CrossRef] [PubMed]
  7. C. Warde, J. I. Thackara, Opt. Lett. 7, 344 (1982).
    [CrossRef] [PubMed]
  8. P. W. Smith, E. H. Turner, Appl. Phys. Lett. 30, 280 (1977).
    [CrossRef]
  9. E. Garmire, J. H. Marburger, S. D. Allen, Appl. Phys. Lett. 32, 320 (1978).
    [CrossRef]
  10. G. W. Johnson, D. T. Moore, Proc. Soc. Photo-Opt. Instrum. Eng. 103, 76 (1977).
  11. G. Q. McDowell, D.Sc. Thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1971).
  12. W. T. Cathey, C. L. Hayes, W. C. Davis, V. F. Pizurro, Appl. Opt. 9, 701 (1970).
    [CrossRef] [PubMed]

1982 (2)

1981 (2)

1979 (1)

1978 (2)

J. W. Hardy, Proc. IEEE 66, 651 (1978).
[CrossRef]

E. Garmire, J. H. Marburger, S. D. Allen, Appl. Phys. Lett. 32, 320 (1978).
[CrossRef]

1977 (2)

G. W. Johnson, D. T. Moore, Proc. Soc. Photo-Opt. Instrum. Eng. 103, 76 (1977).

P. W. Smith, E. H. Turner, Appl. Phys. Lett. 30, 280 (1977).
[CrossRef]

1970 (1)

Allen, S. D.

E. Garmire, J. H. Marburger, S. D. Allen, Appl. Phys. Lett. 32, 320 (1978).
[CrossRef]

Cathey, W. T.

Davis, W. C.

Fisher, A. D.

Garmire, E.

E. Garmire, J. H. Marburger, S. D. Allen, Appl. Phys. Lett. 32, 320 (1978).
[CrossRef]

Hardy, J. W.

J. W. Hardy, Proc. IEEE 66, 651 (1978).
[CrossRef]

Hayes, C. L.

Johnson, G. W.

G. W. Johnson, D. T. Moore, Proc. Soc. Photo-Opt. Instrum. Eng. 103, 76 (1977).

Marburger, J. H.

E. Garmire, J. H. Marburger, S. D. Allen, Appl. Phys. Lett. 32, 320 (1978).
[CrossRef]

McDowell, G. Q.

G. Q. McDowell, D.Sc. Thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1971).

Moore, D. T.

G. W. Johnson, D. T. Moore, Proc. Soc. Photo-Opt. Instrum. Eng. 103, 76 (1977).

O’Meara, T. R.

T. R. O’Meara, Opt. Eng. 21, 231 (1982).

Pizurro, V. F.

Shapiro, J. H.

J. H. Shapiro, C. Warde, Opt. Eng. 20, 1 (1981).

Smith, P. W.

P. W. Smith, E. H. Turner, Appl. Phys. Lett. 30, 280 (1977).
[CrossRef]

Thackara, J. I.

Turner, E. H.

P. W. Smith, E. H. Turner, Appl. Phys. Lett. 30, 280 (1977).
[CrossRef]

Warde, C.

Weiss, A. M.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

P. W. Smith, E. H. Turner, Appl. Phys. Lett. 30, 280 (1977).
[CrossRef]

E. Garmire, J. H. Marburger, S. D. Allen, Appl. Phys. Lett. 32, 320 (1978).
[CrossRef]

Opt. Eng. (2)

J. H. Shapiro, C. Warde, Opt. Eng. 20, 1 (1981).

T. R. O’Meara, Opt. Eng. 21, 231 (1982).

Opt. Lett. (2)

Proc. IEEE (1)

J. W. Hardy, Proc. IEEE 66, 651 (1978).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. W. Johnson, D. T. Moore, Proc. Soc. Photo-Opt. Instrum. Eng. 103, 76 (1977).

Other (2)

G. Q. McDowell, D.Sc. Thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1971).

A. D. Fisher, Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge, Mass., 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

All-optical adaptive phase-compensated communications (direct-detection) receiver.

Fig. 2
Fig. 2

An “all-optical” high-resolution IPL.

Fig. 3
Fig. 3

Single-channel IPL experimental results. (a) Phase compensation (ϕe ≃ constant) and simultaneous phase estimation (ϕmϕi′), G1 = 10π. (b) Closed-loop and open-loop response to 0–150-Hz-bandwidth input phase fluctuations with two different IPL loop-filter bandwidths (ω1 = 104 sec−1 and ω2 = 50 sec−1), G1 = 20π. (c) Immunity of phase compensation (ϕe ≃ constant) to amplitude |Ei| fluctuations, G1 = 20π.

Fig. 4
Fig. 4

Nineteen-element IPL experiments. (a) Nineteen-element discrete-channel modulator array. (b) Photographs of Fourier transforms of aberrated and compensated waves. (c), (d) Response of a diffraction-limited detector in the Fourier plane to (c) static and (d) dynamic phase fluctuations. (O is the zero-light level.)

Fig. 5
Fig. 5

Phase-compensation results with the “all-optical” MSLM/IPL system. (a) Interferogram of the initial phase distortion (dynamic range of ≃ π rad). (b) Interferogram after IPL compensation. (c) Long-term exposure of (b) to show residual error. The fine fringes in the lower left of (a) and (c) are due to light that reflected from the MCP.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I o + I 1 sin ϕ e ,
ϕ e = ϕ i ϕ m ϕ o ϕ l ϕ i ϕ m .
( d ϕ m / d t ) + ω o ϕ m = ω o [ G o + G 1 sin ( ϕ i ϕ m ) ] .
ϕ m ϕ i + 2 n π .

Metrics