Abstract

We analyze coherent anti-Stokes Raman scattering in thin-film dielectric waveguides. Extraordinarily large signal levels are predicted, and two applications of this phenomenon are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Uesugi, T. Kimura, Appl. Phys. Lett 29, 572 (1976); W. Sohler, H. Suche, Appl. Phys. Lett. 33, 518 (1978).
    [Crossref]
  2. W. Sohler, H. Suche, Appl. Phys. Lett. 37, 255 (1980); N. Uesugi, Appl. Phys. Lett. 36, 178 (1980).
    [Crossref]
  3. R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 36, 253 (1980); Opt. Lett. 4, 58 (1979).
    [Crossref] [PubMed]
  4. H. J. Simon, D. E. Mitchell, J. C. Watson, Phys. Rev. Lett. 33, 1531 (1974); Opt. Lett. 13, 294 (1975).
    [Crossref]
  5. G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
    [Crossref]
  6. For example, see E. Burstein, C. Y. Chen, in Proceedings of the Seventh International Conference on Raman Spectroscopy, W. F. Murphy, ed. (North-Holland, Amsterdam, 1980), p. 346; P. M. Platzman, S. L. McCall, P. A. Wolff, ibid., p, 390; M. Moskovits, D. Gielella, P. McBreen, R. Lipson, A. Gohin, ibid., p. 394.
  7. C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
    [Crossref]
  8. J. F. Rabolt, R. Santo, J. D. Swalen, Appl. Spectrosc. 34, 517 (1980).
    [Crossref]
  9. R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
    [Crossref]
  10. J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976); J. L. Oudar, R. W. Smith, Y. R. Shen, Appl. Phys. Lett. 34, 758 (1979).
    [Crossref]
  11. P. D. Maker, R. Terhune, Phys. Rev. A137, 801 (1964).
  12. The value of χb(3) is not known for Nb2O5. We have assumed a large value to illustrate the effectiveness of the cancellation technique.

1982 (1)

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[Crossref]

1980 (3)

W. Sohler, H. Suche, Appl. Phys. Lett. 37, 255 (1980); N. Uesugi, Appl. Phys. Lett. 36, 178 (1980).
[Crossref]

R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 36, 253 (1980); Opt. Lett. 4, 58 (1979).
[Crossref] [PubMed]

J. F. Rabolt, R. Santo, J. D. Swalen, Appl. Spectrosc. 34, 517 (1980).
[Crossref]

1979 (1)

R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
[Crossref]

1976 (3)

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976); J. L. Oudar, R. W. Smith, Y. R. Shen, Appl. Phys. Lett. 34, 758 (1979).
[Crossref]

N. Uesugi, T. Kimura, Appl. Phys. Lett 29, 572 (1976); W. Sohler, H. Suche, Appl. Phys. Lett. 33, 518 (1978).
[Crossref]

C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
[Crossref]

1974 (1)

H. J. Simon, D. E. Mitchell, J. C. Watson, Phys. Rev. Lett. 33, 1531 (1974); Opt. Lett. 13, 294 (1975).
[Crossref]

1964 (1)

P. D. Maker, R. Terhune, Phys. Rev. A137, 801 (1964).

Burke, J. J.

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[Crossref]

Burstein, E.

For example, see E. Burstein, C. Y. Chen, in Proceedings of the Seventh International Conference on Raman Spectroscopy, W. F. Murphy, ed. (North-Holland, Amsterdam, 1980), p. 346; P. M. Platzman, S. L. McCall, P. A. Wolff, ibid., p, 390; M. Moskovits, D. Gielella, P. McBreen, R. Lipson, A. Gohin, ibid., p. 394.

Chen, C. K.

C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
[Crossref]

Chen, C. Y.

For example, see E. Burstein, C. Y. Chen, in Proceedings of the Seventh International Conference on Raman Spectroscopy, W. F. Murphy, ed. (North-Holland, Amsterdam, 1980), p. 346; P. M. Platzman, S. L. McCall, P. A. Wolff, ibid., p, 390; M. Moskovits, D. Gielella, P. McBreen, R. Lipson, A. Gohin, ibid., p. 394.

DeCastro, A. R. B.

C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
[Crossref]

De-Martini, F.

C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
[Crossref]

Eesley, G. L.

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976); J. L. Oudar, R. W. Smith, Y. R. Shen, Appl. Phys. Lett. 34, 758 (1979).
[Crossref]

Hall, D. G.

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[Crossref]

Kimura, T.

N. Uesugi, T. Kimura, Appl. Phys. Lett 29, 572 (1976); W. Sohler, H. Suche, Appl. Phys. Lett. 33, 518 (1978).
[Crossref]

Levenson, M. D.

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976); J. L. Oudar, R. W. Smith, Y. R. Shen, Appl. Phys. Lett. 34, 758 (1979).
[Crossref]

Maker, P. D.

P. D. Maker, R. Terhune, Phys. Rev. A137, 801 (1964).

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, J. C. Watson, Phys. Rev. Lett. 33, 1531 (1974); Opt. Lett. 13, 294 (1975).
[Crossref]

Normandin, R.

R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 36, 253 (1980); Opt. Lett. 4, 58 (1979).
[Crossref] [PubMed]

R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
[Crossref]

Rabolt, J. F.

Santo, R.

Shen, Y. R.

C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
[Crossref]

Simon, H. J.

H. J. Simon, D. E. Mitchell, J. C. Watson, Phys. Rev. Lett. 33, 1531 (1974); Opt. Lett. 13, 294 (1975).
[Crossref]

So, V. C. Y.

R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
[Crossref]

Sohler, W.

W. Sohler, H. Suche, Appl. Phys. Lett. 37, 255 (1980); N. Uesugi, Appl. Phys. Lett. 36, 178 (1980).
[Crossref]

Song, J. J.

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976); J. L. Oudar, R. W. Smith, Y. R. Shen, Appl. Phys. Lett. 34, 758 (1979).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[Crossref]

R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 36, 253 (1980); Opt. Lett. 4, 58 (1979).
[Crossref] [PubMed]

R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
[Crossref]

Suche, H.

W. Sohler, H. Suche, Appl. Phys. Lett. 37, 255 (1980); N. Uesugi, Appl. Phys. Lett. 36, 178 (1980).
[Crossref]

Swalen, J. D.

Teh, G. A.

R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
[Crossref]

Terhune, R.

P. D. Maker, R. Terhune, Phys. Rev. A137, 801 (1964).

Uesugi, N.

N. Uesugi, T. Kimura, Appl. Phys. Lett 29, 572 (1976); W. Sohler, H. Suche, Appl. Phys. Lett. 33, 518 (1978).
[Crossref]

Watson, J. C.

H. J. Simon, D. E. Mitchell, J. C. Watson, Phys. Rev. Lett. 33, 1531 (1974); Opt. Lett. 13, 294 (1975).
[Crossref]

Appl. Phys. Lett (1)

N. Uesugi, T. Kimura, Appl. Phys. Lett 29, 572 (1976); W. Sohler, H. Suche, Appl. Phys. Lett. 33, 518 (1978).
[Crossref]

Appl. Phys. Lett. (5)

W. Sohler, H. Suche, Appl. Phys. Lett. 37, 255 (1980); N. Uesugi, Appl. Phys. Lett. 36, 178 (1980).
[Crossref]

R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 36, 253 (1980); Opt. Lett. 4, 58 (1979).
[Crossref] [PubMed]

G. I. Stegeman, J. J. Burke, D. G. Hall, Appl. Phys. Lett. 41, 906 (1982).
[Crossref]

R. Normandin, V. C. Y. So, G. A. Teh, G. I. Stegeman, Appl. Phys. Lett. 34, 200 (1979).
[Crossref]

J. J. Song, G. L. Eesley, M. D. Levenson, Appl. Phys. Lett. 29, 567 (1976); J. L. Oudar, R. W. Smith, Y. R. Shen, Appl. Phys. Lett. 34, 758 (1979).
[Crossref]

Appl. Spectrosc. (1)

Phys. Rev. (1)

P. D. Maker, R. Terhune, Phys. Rev. A137, 801 (1964).

Phys. Rev. Lett. (2)

C. K. Chen, A. R. B. DeCastro, Y. R. Shen, F. De-Martini, Phys. Rev. Lett. 43, 946 (1976).
[Crossref]

H. J. Simon, D. E. Mitchell, J. C. Watson, Phys. Rev. Lett. 33, 1531 (1974); Opt. Lett. 13, 294 (1975).
[Crossref]

Other (2)

For example, see E. Burstein, C. Y. Chen, in Proceedings of the Seventh International Conference on Raman Spectroscopy, W. F. Murphy, ed. (North-Holland, Amsterdam, 1980), p. 346; P. M. Platzman, S. L. McCall, P. A. Wolff, ibid., p, 390; M. Moskovits, D. Gielella, P. McBreen, R. Lipson, A. Gohin, ibid., p. 394.

The value of χb(3) is not known for Nb2O5. We have assumed a large value to illustrate the effectiveness of the cancellation technique.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top: Interaction geometry for CARS in thin films or in a monolayer deposited on a waveguide. Bottom: Typical electric-field distributions for TEm modes, with m = 0, 1, 2.

Fig. 2
Fig. 2

The nonlinear cross-section coefficient DNL (solid line), the incident pulse energies (15-nsec duration) required to maintain a maximum power density of 200 MW/cm2 in the film (long-dashed line), and the fraction of beam 1 (or 2) converted into the CARS signal (short-dashed line).

Fig. 3
Fig. 3

Resonant and background CARS signals in photons per pulse from a benzene monolayer on a Nb2O5–SiO2 waveguide versus Nb2O5 film thickness. For TE waves: (solid line), CARS signal, (long-dashed line) background. For TM wavaes: (dotted–dashed line) CARS signal, (short-dashed line) background. The modes used were TE2(ω1), TE1(ω2), and TE2(ω3); or TM2(ω1), TM1(ω2), and TM2(ω3).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E i = 1 2 j ^ exp [ i ( ω i t - β i x ) ] f i ( z ) a i ( x ) + c . c . ,
f i ( z ) = C TE i exp S i z ,             S i 2 = β i 2 - n c k 2 2 ,
f i ( z ) = C TE i [ cos ( κ i z ) + S i κ i sin ( κ i z ) ] ,             κ i 2 = n f k 2 2 - β i 2 ,
f i ( z ) = C TE i [ cos ( κ i h ) + S i κ i sin ( κ i h ) ] exp [ - P i ( z - h ) ] ,             P i 2 = β i 2 - n s 2 k 2 .
C TE i = 2 κ i [ β i ω i μ 0 ( h + 1 / S i + 1 / P i ) ( κ i 2 + S i 2 ) ] - 1 / 2
P ( ω 3 ) = 0 χ ( 3 ) ( ω 3 , - ω 2 , ω 1 , ω 1 ) : E 1 2 E 2 * , ω 3 = 2 ω 1 - ω 2
P y ( ω 3 ) = 0 χ yyyy ( 3 ) f 1 2 ( z ) f 2 ( z ) C TE 1 2 C TE 2 * a 1 2 ( x ) a 2 ( x ) × exp [ i ( 2 ω 1 - ω 2 ) t - i ( 2 β 1 - β 2 ) · r ] ,
( d a 3 ( r ) d r ) + β I 3 a 3 ( r ) k c 0 4 i F C TE 1 2 C TE 2 C TE 3 * a 1 2 ( 0 ) a 2 ( 0 ) × exp [ - ( 2 β I 1 + β I 2 ) r ] ,
F = - χ yyyy ( 3 ) ( z ) f 1 2 ( z ) f 2 * ( z ) f 3 * ( z ) d z ,
a 3 ( r ) = k c 0 4 i F C TE 1 2 C TE 2 * C TE 3 * a 1 2 ( 0 ) a 2 ( 0 ) × exp [ - ( 2 β I 1 + β I 2 ) r ] - exp ( - β I 3 r ) β I 3 - 2 β I 1 - β I 2 .
P 3 = | k c 0 4 | 2 C TE 1 2 C TE 2 * C TE 3 * 2 ( L H ) 2 F 2 P 1 2 P 2 = D NL ( L H ) 2 P 1 2 P 2 .
χ ( 3 ) = χ b ( 3 ) + p χ r p ( 3 ) Γ p / [ ω 1 - ω 2 - ω p ) - i Γ p ] ,
F = f 1 2 ( z ) f 2 * ( z ) f 3 * d z χ r p ( 3 ) ( film ) × Γ p ( ω 1 - ω 2 - ω p ) + i Γ p .

Metrics