Abstract

We report the narrowing of pulses, initially 7 psec FWHM, to widths as small as 0.26 psec by various lengths, short relative to the soliton period, of single-mode, low-loss optical fiber. Since the ~1.5-μm wavelength lies in the region of negative group-velocity dispersion (∂νg/∂λ < 0), no auxiliary dispersive element was required to complete the narrowing. Optimum compression was obtained for peak-pulse input powers of several hundred watts, corresponding to relatively high (N > 10) soliton number. We show these results to be in at least semiquantitative agreement with prediction based on the nonlinear Schrödinger equation.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  2. The nonlinear equation describing the pulse envelope function can be reduced to a (dimensionless) nonlinear Schrödinger equation in several ways. However, for the particular transformation referred to in this work, see Eqs. (3a)–(3c) of Ref. (1).
  3. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
    [CrossRef]
  4. B. Nikolaus, D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1 (1983).
    [CrossRef]
  5. R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers, Phys Rev A 17, 1448 (1978).
    [CrossRef]
  6. J. Satsuma, N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. Suppl. 55, 284 (1974).
    [CrossRef]
  7. V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 34, 61 (1971) [Sov. Phys. JETP 34, 62 (1971)].
  8. R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
    [CrossRef] [PubMed]
  9. R. H. Stolen, J. Botineau, A. Ashkin, “Intensity discrimination of optical pulse with birefringent fibers,” Opt. Lett. 7, 512 (1981).
    [CrossRef]
  10. L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

1983 (2)

1982 (2)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

1981 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1978 (1)

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers, Phys Rev A 17, 1448 (1978).
[CrossRef]

1974 (1)

J. Satsuma, N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

1971 (1)

V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 34, 61 (1971) [Sov. Phys. JETP 34, 62 (1971)].

Ashkin, A.

Botineau, J.

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Grischkowsky, D.

B. Nikolaus, D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1 (1983).
[CrossRef]

Lin, C.

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers, Phys Rev A 17, 1448 (1978).
[CrossRef]

Mollenauer, L. F.

R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Nikolaus, B.

B. Nikolaus, D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1 (1983).
[CrossRef]

Satsuma, J.

J. Satsuma, N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Shabat, A. B.

V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 34, 61 (1971) [Sov. Phys. JETP 34, 62 (1971)].

Shank, C. V.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Stolen, R. H.

R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8, 186 (1983).
[CrossRef] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

R. H. Stolen, J. Botineau, A. Ashkin, “Intensity discrimination of optical pulse with birefringent fibers,” Opt. Lett. 7, 512 (1981).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers, Phys Rev A 17, 1448 (1978).
[CrossRef]

Tomlinson, W. J.

Yajima, N.

J. Satsuma, N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

Zakharov, V. E.

V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 34, 61 (1971) [Sov. Phys. JETP 34, 62 (1971)].

Appl. Phys. Lett. (2)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982).
[CrossRef]

B. Nikolaus, D. Grischkowsky, “12× pulse compression using optical fibers,” Appl. Phys. Lett. 42, 1 (1983).
[CrossRef]

Laser Focus (1)

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

Opt. Lett. (2)

Phys Rev A (1)

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers, Phys Rev A 17, 1448 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Prog. Theor. Phys. Suppl. (1)

J. Satsuma, N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Zh. Eksp. Teor. Fiz. 34, 61 (1971) [Sov. Phys. JETP 34, 62 (1971)].

Other (1)

The nonlinear equation describing the pulse envelope function can be reduced to a (dimensionless) nonlinear Schrödinger equation in several ways. However, for the particular transformation referred to in this work, see Eqs. (3a)–(3c) of Ref. (1).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated properties of the first optimal narrowing by means of the soliton effect in single-mode fibers and some related experimental data as a function of soliton number N: crosses, 320-m fiber; open circles, 100-m fiber (see text).

Fig. 2
Fig. 2

Calculated pulse shapes at the point of optimal narrowing (see text). The narrow minima correspond to zero intensity.

Fig. 3
Fig. 3

Autocorrelation traces of pulses initially 7 psec wide emerging from a 320-m single-mode fiber at the various indicated input powers and related soliton numbers (see text).

Fig. 4
Fig. 4

Autocorrelation trace of a pulse initially 7 psec wide emerging from a 100-m single-mode fiber. Input power, ~200 W peak.

Metrics