Abstract

Third-harmonic generation and three-wave sum-frequency light generation in a short-length elliptical-core optical fiber pumped by pulses from a Q-switched and mode-locked Nd:YAG laser, operating at 1.064 μm, have been observed in the 355–385-nm spectral range. In particular, the third harmonics of the pump (λ0 = 1.064 μm, λ0/3 = 354.7 nm) and of the first Raman Stokes (λ1 = 1.116 μm λ0/3 = 372.0 nm) lines have been obtained with 5-kW peak power of the laser pulses.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujii, B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Sum-frequency light generation in optical fibers,” Opt. Lett. 5, 48 (1980).
    [CrossRef] [PubMed]
  2. Y. Ohmori, Y. Sasaki, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466 (1981).
    [CrossRef]
  3. Y. Sasaki, Y. Ohmori, “Characteristics of phase matched sum-frequency light in optical fibers,” Electron. Lett. 17, 678 (1981).
    [CrossRef]
  4. Y. Ohmori, Y. Sasaki, “Two-wave sum-frequency light generation in optical fibers,” IEEE J. Quantum Electron. QE-18, 758 (1982).
    [CrossRef]
  5. R. H. Stolen, “Fiber design for non-linear optics,” in Physics of Fiber Optics, Vol. 2 in Advances in Ceramics, B. Bendow, ed. (American Ceramic Society, Columbus, Ohio, 1981), p. 179.
  6. J. R. Cozens, R. B. Dyott, “Higher-mode cutoff in elliptical dielectric waveguides,” Electron. Lett. 15, 558 (1979).
    [CrossRef]
  7. R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1973).
    [CrossRef]
  8. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  9. R. B. Dyott, J. R. Cozens, D. G. Morris, “Preservation of polarization in optical fibre waveguides with elliptical cores,” Electron. Lett. 15, 380 (1979).
    [CrossRef]

1982 (1)

Y. Ohmori, Y. Sasaki, “Two-wave sum-frequency light generation in optical fibers,” IEEE J. Quantum Electron. QE-18, 758 (1982).
[CrossRef]

1981 (2)

Y. Ohmori, Y. Sasaki, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Y. Sasaki, Y. Ohmori, “Characteristics of phase matched sum-frequency light in optical fibers,” Electron. Lett. 17, 678 (1981).
[CrossRef]

1980 (1)

1979 (2)

R. B. Dyott, J. R. Cozens, D. G. Morris, “Preservation of polarization in optical fibre waveguides with elliptical cores,” Electron. Lett. 15, 380 (1979).
[CrossRef]

J. R. Cozens, R. B. Dyott, “Higher-mode cutoff in elliptical dielectric waveguides,” Electron. Lett. 15, 558 (1979).
[CrossRef]

1973 (1)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

1971 (1)

Cozens, J. R.

J. R. Cozens, R. B. Dyott, “Higher-mode cutoff in elliptical dielectric waveguides,” Electron. Lett. 15, 558 (1979).
[CrossRef]

R. B. Dyott, J. R. Cozens, D. G. Morris, “Preservation of polarization in optical fibre waveguides with elliptical cores,” Electron. Lett. 15, 380 (1979).
[CrossRef]

Dyott, R. B.

R. B. Dyott, J. R. Cozens, D. G. Morris, “Preservation of polarization in optical fibre waveguides with elliptical cores,” Electron. Lett. 15, 380 (1979).
[CrossRef]

J. R. Cozens, R. B. Dyott, “Higher-mode cutoff in elliptical dielectric waveguides,” Electron. Lett. 15, 558 (1979).
[CrossRef]

Fujii, Y.

Gloge, D.

Hill, K. O.

Ippen, E. P.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Johnson, D. C.

Kawasaki, B. S.

Morris, D. G.

R. B. Dyott, J. R. Cozens, D. G. Morris, “Preservation of polarization in optical fibre waveguides with elliptical cores,” Electron. Lett. 15, 380 (1979).
[CrossRef]

Ohmori, Y.

Y. Ohmori, Y. Sasaki, “Two-wave sum-frequency light generation in optical fibers,” IEEE J. Quantum Electron. QE-18, 758 (1982).
[CrossRef]

Y. Ohmori, Y. Sasaki, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Y. Sasaki, Y. Ohmori, “Characteristics of phase matched sum-frequency light in optical fibers,” Electron. Lett. 17, 678 (1981).
[CrossRef]

Sasaki, Y.

Y. Ohmori, Y. Sasaki, “Two-wave sum-frequency light generation in optical fibers,” IEEE J. Quantum Electron. QE-18, 758 (1982).
[CrossRef]

Y. Ohmori, Y. Sasaki, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

Y. Sasaki, Y. Ohmori, “Characteristics of phase matched sum-frequency light in optical fibers,” Electron. Lett. 17, 678 (1981).
[CrossRef]

Stolen, R. H.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

R. H. Stolen, “Fiber design for non-linear optics,” in Physics of Fiber Optics, Vol. 2 in Advances in Ceramics, B. Bendow, ed. (American Ceramic Society, Columbus, Ohio, 1981), p. 179.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Ohmori, Y. Sasaki, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39, 466 (1981).
[CrossRef]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1973).
[CrossRef]

Electron. Lett. (3)

Y. Sasaki, Y. Ohmori, “Characteristics of phase matched sum-frequency light in optical fibers,” Electron. Lett. 17, 678 (1981).
[CrossRef]

R. B. Dyott, J. R. Cozens, D. G. Morris, “Preservation of polarization in optical fibre waveguides with elliptical cores,” Electron. Lett. 15, 380 (1979).
[CrossRef]

J. R. Cozens, R. B. Dyott, “Higher-mode cutoff in elliptical dielectric waveguides,” Electron. Lett. 15, 558 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Ohmori, Y. Sasaki, “Two-wave sum-frequency light generation in optical fibers,” IEEE J. Quantum Electron. QE-18, 758 (1982).
[CrossRef]

Opt. Lett. (1)

Other (1)

R. H. Stolen, “Fiber design for non-linear optics,” in Physics of Fiber Optics, Vol. 2 in Advances in Ceramics, B. Bendow, ed. (American Ceramic Society, Columbus, Ohio, 1981), p. 179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for the observation of third-harmonic and three-wave sum-frequency light generation. The output light is analyzed with a monochromator and detected by a photomultiplier. An IR-absorbing filter has been used to separate the IR and the visible parts of the generated spectrum. The far-field visible-light pattern could also be recorded with photographic equipment.

Fig. 2
Fig. 2

Raman spectrum of the 2-m-long sample of the tested fiber. First (1.116-μm) and second (1.175-μm) Stokes lines are generated beside the 1.064-μm pump line with characteristic 440-cm−1 shift of fused silica.

Fig. 3
Fig. 3

Visible-light spectrum emerging from the fiber. The frequencies corresponding to the pump (Ω0, λ0 = 1.064 μm) and the first Stokes (Ω0, λ1 = 1.116 μm) lines have been used to designate the first generated visible lines. The third harmonic of the pump (3Ω0, 354.7-nm) and the first Stokes (3Ω1, 372.0-nm) lines can be observed beside three-wave sum-frequency lines at 360.3 nm (2Ω1 + Ω1) and 366 nm (2Ω1 + Ω0).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

3 Ω 0 - ( 2 Ω 0 + Ω 1 ) = Ω 0 - Ω 1 , ( 2 Ω 0 + Ω 1 ) - ( 2 Ω 1 + Ω 0 ) = Ω 0 - Ω 1 , 3 Ω 1 - ( 2 Ω 1 + Ω 0 ) = Ω 0 - Ω 1 ,
Ω 0 - Ω 1 = + 2 Π c δ τ ,

Metrics