Abstract

Periodically stressing a birefringent fiber once per beat length can cause coherent coupling to occur between polarization modes. Such a birefringent-fiber polarization coupler is described here. More than 30 dB of power transfer between polarizations has been achieved. The device has been used as the output coupler of an in-line Mach–Zehnder interferometer, and better than 25-dB on/off extinction has been measured. The device is wavelength selective and can be used as a multiplexer or as a notch filter. A notch of 9-nm full width at half-maximum has been achieved with a 60-period comb structure.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Rashleigh, W. K. Burns, and R. P. Moeller, "Polarization holding in birefringent single-mode fibers," Opt. Lett. 7, 40 (1982).
    [Crossref] [PubMed]
  2. K. Okamato, T. Edakiro, and N. Shibata, "Polarization properties of single-polarization fibers," Opt. Lett. 7, 569 (1982).
    [Crossref]
  3. R. Ulrich and M. Johnson, "Fiber-ring interferometer: polarization analysis," Opt. Lett. 4, 153 (1979).
    [Crossref]
  4. T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
    [Crossref]
  5. W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.
  6. S. E. Miller, "On solutions for two waves with periodic coupling," Bell Syst. Tech. J. 47, 1801 (1968).
  7. S. E. Harris and R. W. Wallace, "Acousto-optic tunable filter," J. Opt. Soc. Am. 59, 744 (1969).
    [Crossref]
  8. R. C. Alferness and L. L. Buhl, "Waveguide electro-optic polarization transformer," Appl. Phys. Lett. 38, 655 (1981).
    [Crossref]
  9. M. Johnson, "In-line fiber-optical polarization transformer," Appl. Opt. 18, 1288 (1979).
    [Crossref] [PubMed]

1983 (1)

W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.

1982 (3)

1981 (1)

R. C. Alferness and L. L. Buhl, "Waveguide electro-optic polarization transformer," Appl. Phys. Lett. 38, 655 (1981).
[Crossref]

1979 (2)

M. Johnson, "In-line fiber-optical polarization transformer," Appl. Opt. 18, 1288 (1979).
[Crossref] [PubMed]

R. Ulrich and M. Johnson, "Fiber-ring interferometer: polarization analysis," Opt. Lett. 4, 153 (1979).
[Crossref]

1969 (1)

1968 (1)

S. E. Miller, "On solutions for two waves with periodic coupling," Bell Syst. Tech. J. 47, 1801 (1968).

Abebe, M.

W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.

Alferness, R. C.

R. C. Alferness and L. L. Buhl, "Waveguide electro-optic polarization transformer," Appl. Phys. Lett. 38, 655 (1981).
[Crossref]

Buchard, J. A.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Buhl, L. L.

R. C. Alferness and L. L. Buhl, "Waveguide electro-optic polarization transformer," Appl. Phys. Lett. 38, 655 (1981).
[Crossref]

Burns, W. K.

W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.

S. C. Rashleigh, W. K. Burns, and R. P. Moeller, "Polarization holding in birefringent single-mode fibers," Opt. Lett. 7, 40 (1982).
[Crossref] [PubMed]

Cole, J. H.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Dandridge, A.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Edakiro, T.

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Harris, S. E.

Johnson, M.

M. Johnson, "In-line fiber-optical polarization transformer," Appl. Opt. 18, 1288 (1979).
[Crossref] [PubMed]

R. Ulrich and M. Johnson, "Fiber-ring interferometer: polarization analysis," Opt. Lett. 4, 153 (1979).
[Crossref]

Miller, S. E.

S. E. Miller, "On solutions for two waves with periodic coupling," Bell Syst. Tech. J. 47, 1801 (1968).

Moeller, R. P.

W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.

S. C. Rashleigh, W. K. Burns, and R. P. Moeller, "Polarization holding in birefringent single-mode fibers," Opt. Lett. 7, 40 (1982).
[Crossref] [PubMed]

Okamato, K.

Priest, R. G.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

S. C. Rashleigh, W. K. Burns, and R. P. Moeller, "Polarization holding in birefringent single-mode fibers," Opt. Lett. 7, 40 (1982).
[Crossref] [PubMed]

Shibata, N.

Sigel, Jr., G. H.

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Ulrich, R.

R. Ulrich and M. Johnson, "Fiber-ring interferometer: polarization analysis," Opt. Lett. 4, 153 (1979).
[Crossref]

Villarruel, C. A.

W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.

Wallace, R. W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. C. Alferness and L. L. Buhl, "Waveguide electro-optic polarization transformer," Appl. Phys. Lett. 38, 655 (1981).
[Crossref]

Bell Syst. Tech. J. (1)

S. E. Miller, "On solutions for two waves with periodic coupling," Bell Syst. Tech. J. 47, 1801 (1968).

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi, J. A. Buchard, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Other (1)

W. K. Burns, R. P. Moeller, C. A. Villarruel, and M. Abebe, "Fiber optic gyroscope with polarization holding fiber," in Digest of Topical Meeting on Optical Fiber Communication, New Orleans, La., 1983. Post-deadline Paper PD 2–1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

On application of a small force to a birefringent fiber, the principal polarization axes x and y rotate by an angle θ to become new principal polarizations x′ and y′.

Fig. 2
Fig. 2

Birefringent fiber polarization coupler. Plastic ridges are used to produce periodic pressure regions in the fiber.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup.

Fig. 4
Fig. 4

Theoretical curve and experimental data of power that stays in the original polarization as a function of wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n p = a n 3 C f / 2 d ,
θ sin ( θ ) = [ Δ n p 2 2 ( Δ n p 2 + Δ n 2 + 2 Δ n Δ n p ) ] 1 / 2 .
T = [ cos 2 θ sin 2 θ sin 2 θ cos 2 θ ] .
T N = [ ( 1 ) N cos 2 N θ ( 1 ) N + 1 sin 2 N θ ( 1 ) N sin 2 N θ ( 1 ) N cos 2 N θ ] .
F 2 Δ n L d π / 4 a n 3 C .
T = [ sin 2 θ cos 2 θ e ι 2 δ sin θ cos θ ( 1 + e i 2 δ ) sin θ cos θ ( 1 + e i 2 δ ) sin 2 θ cos 2 θ e i 2 δ ] .
κ = sin θ cos θ ( 1 + e i 2 δ ) [ sin ( N cos 1 b ( 1 b 2 ) 2 ] , b = sin 2 θ cos 2 θ cos 2 δ .

Metrics