Abstract

We describe an in-line, single-mode fiber attenuator using a combination of polarization-preserving and single-polarization fibers. The attenuation is adjustable over a 30-dB range by varying the birefringence of a short length of fiber with tension. The insertion loss is 1.3 dB. The tension birefringence arises from the difference in Poisson’s ratio between the noncircular stress cladding and the silica substrate glass.

© 1983 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High birefringence in tension-coiled single-mode fibers

S. C. Rashleigh and R. Ulrich
Opt. Lett. 5(8) 354-356 (1980)

Polishing-induced birefringence in single-mode fibers

Rogers H. Stolen
Appl. Opt. 25(3) 344-347 (1986)

Elasto-optics in double-coated optical fibers induced by axial strain and hydrostatic pressure

Yu-Ching Yang, Haw-Long Lee, and Huann-Ming Chou
Appl. Opt. 41(10) 1989-1994 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
    [Crossref]
  2. C. R. Kurkjian and U. C. Paek, “Single-valued strength of ‘perfect’ silica fibers,” Appl. Phys. Lett. 42, 251–253 (1983).
    [Crossref]
  3. S. C. Rashleigh, “Polarimetric sensors: exploiting the axial stress in high birefringence fibers” presented at the First International Conference on Optical Fiber Sensors, London, April 1983.
  4. This birefringent fiber is similar in structure to the single-polarization fiber of Ref. 1.
  5. V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt. 18, 4080–4084 (1979).
    [Crossref] [PubMed]
  6. R. H. Stolen, R. E. Howard, and W. Pleibel, “Substratetube lithography for optical fibers,” Electron. Lett. 18, 764–765 (1982).
    [Crossref]
  7. S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. (McGraw-Hill, New York, 1951).
  8. W. Eickhoff, “Stress-induced single-polarization single-mode fiber,” Opt. Lett. 7, 629–631 (1982).
    [Crossref] [PubMed]
  9. R. H. Stolen, “Calculation of stress birefringence in fibers by an infinitesimal element method,” IEEE J. Lightwave Technol. LT-1, 297–301 (1983).
    [Crossref]
  10. M. A. Jaswon and R. D. Bhargave, “Two-dimensional elastic includion problems,” Proc. Camb. Phil. Soc. Math. Phys. Sci. 57, 669–680 (1961).
    [Crossref]
  11. C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).
  12. C. A. Maynell, G. A. Saunders, and S. Scholes, “Ultrasound propagation in glasses in the metastable immiscibility region of the sodium borosilicate system,” J. Non-Cryst. Solids 12, 271–294 (1973); N. Lakagos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions at single-mode optical fibers using Brillouin scattering,” Appl. Opt. 14, 3668–3670 (1980).
    [Crossref]
  13. J. W. Evans, “The birefringent filter,” J. Opt. Soc. Am. 39, 229–242 (1949).
    [Crossref]

1983 (3)

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

C. R. Kurkjian and U. C. Paek, “Single-valued strength of ‘perfect’ silica fibers,” Appl. Phys. Lett. 42, 251–253 (1983).
[Crossref]

R. H. Stolen, “Calculation of stress birefringence in fibers by an infinitesimal element method,” IEEE J. Lightwave Technol. LT-1, 297–301 (1983).
[Crossref]

1982 (2)

R. H. Stolen, R. E. Howard, and W. Pleibel, “Substratetube lithography for optical fibers,” Electron. Lett. 18, 764–765 (1982).
[Crossref]

W. Eickhoff, “Stress-induced single-polarization single-mode fiber,” Opt. Lett. 7, 629–631 (1982).
[Crossref] [PubMed]

1979 (1)

1973 (1)

C. A. Maynell, G. A. Saunders, and S. Scholes, “Ultrasound propagation in glasses in the metastable immiscibility region of the sodium borosilicate system,” J. Non-Cryst. Solids 12, 271–294 (1973); N. Lakagos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions at single-mode optical fibers using Brillouin scattering,” Appl. Opt. 14, 3668–3670 (1980).
[Crossref]

1961 (1)

M. A. Jaswon and R. D. Bhargave, “Two-dimensional elastic includion problems,” Proc. Camb. Phil. Soc. Math. Phys. Sci. 57, 669–680 (1961).
[Crossref]

1949 (1)

Andreatch, P.

C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).

Bateman, T. B.

C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).

Bhargave, R. D.

M. A. Jaswon and R. D. Bhargave, “Two-dimensional elastic includion problems,” Proc. Camb. Phil. Soc. Math. Phys. Sci. 57, 669–680 (1961).
[Crossref]

Divino, M. D.

Eickhoff, W.

Evans, J. W.

Goodier, J. N.

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. (McGraw-Hill, New York, 1951).

Howard, R. E.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

R. H. Stolen, R. E. Howard, and W. Pleibel, “Substratetube lithography for optical fibers,” Electron. Lett. 18, 764–765 (1982).
[Crossref]

Jaswon, M. A.

M. A. Jaswon and R. D. Bhargave, “Two-dimensional elastic includion problems,” Proc. Camb. Phil. Soc. Math. Phys. Sci. 57, 669–680 (1961).
[Crossref]

Krause, J. T.

C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).

Kurkjian, C. R.

C. R. Kurkjian and U. C. Paek, “Single-valued strength of ‘perfect’ silica fibers,” Appl. Phys. Lett. 42, 251–253 (1983).
[Crossref]

C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).

MacChesney, J. B.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

Maynell, C. A.

C. A. Maynell, G. A. Saunders, and S. Scholes, “Ultrasound propagation in glasses in the metastable immiscibility region of the sodium borosilicate system,” J. Non-Cryst. Solids 12, 271–294 (1973); N. Lakagos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions at single-mode optical fibers using Brillouin scattering,” Appl. Opt. 14, 3668–3670 (1980).
[Crossref]

McSkimin, H. J.

C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).

Paek, U. C.

C. R. Kurkjian and U. C. Paek, “Single-valued strength of ‘perfect’ silica fibers,” Appl. Phys. Lett. 42, 251–253 (1983).
[Crossref]

Pleibel, W.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

R. H. Stolen, R. E. Howard, and W. Pleibel, “Substratetube lithography for optical fibers,” Electron. Lett. 18, 764–765 (1982).
[Crossref]

V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt. 18, 4080–4084 (1979).
[Crossref] [PubMed]

Ramaswamy, V.

Rashleigh, S. C.

S. C. Rashleigh, “Polarimetric sensors: exploiting the axial stress in high birefringence fibers” presented at the First International Conference on Optical Fiber Sensors, London, April 1983.

Saunders, G. A.

C. A. Maynell, G. A. Saunders, and S. Scholes, “Ultrasound propagation in glasses in the metastable immiscibility region of the sodium borosilicate system,” J. Non-Cryst. Solids 12, 271–294 (1973); N. Lakagos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions at single-mode optical fibers using Brillouin scattering,” Appl. Opt. 14, 3668–3670 (1980).
[Crossref]

Scholes, S.

C. A. Maynell, G. A. Saunders, and S. Scholes, “Ultrasound propagation in glasses in the metastable immiscibility region of the sodium borosilicate system,” J. Non-Cryst. Solids 12, 271–294 (1973); N. Lakagos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions at single-mode optical fibers using Brillouin scattering,” Appl. Opt. 14, 3668–3670 (1980).
[Crossref]

Sears, F. M.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

Simpson, J. R.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

Stolen, R. H.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

R. H. Stolen, “Calculation of stress birefringence in fibers by an infinitesimal element method,” IEEE J. Lightwave Technol. LT-1, 297–301 (1983).
[Crossref]

R. H. Stolen, R. E. Howard, and W. Pleibel, “Substratetube lithography for optical fibers,” Electron. Lett. 18, 764–765 (1982).
[Crossref]

V. Ramaswamy, R. H. Stolen, M. D. Divino, and W. Pleibel, “Birefringence in elliptically clad borosilicate single-mode fibers,” Appl. Opt. 18, 4080–4084 (1979).
[Crossref] [PubMed]

Timoshenko, S.

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. (McGraw-Hill, New York, 1951).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. R. Kurkjian and U. C. Paek, “Single-valued strength of ‘perfect’ silica fibers,” Appl. Phys. Lett. 42, 251–253 (1983).
[Crossref]

Electron. Lett. (1)

R. H. Stolen, R. E. Howard, and W. Pleibel, “Substratetube lithography for optical fibers,” Electron. Lett. 18, 764–765 (1982).
[Crossref]

IEEE J. Lightwave Technol. (2)

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “Single-polarization fiber,” IEEE J. Lightwave Technol. LT-1, 370–374 (1983).
[Crossref]

R. H. Stolen, “Calculation of stress birefringence in fibers by an infinitesimal element method,” IEEE J. Lightwave Technol. LT-1, 297–301 (1983).
[Crossref]

J. Non-Cryst. Solids (1)

C. A. Maynell, G. A. Saunders, and S. Scholes, “Ultrasound propagation in glasses in the metastable immiscibility region of the sodium borosilicate system,” J. Non-Cryst. Solids 12, 271–294 (1973); N. Lakagos, J. A. Bucaro, and R. Hughes, “Acoustic sensitivity predictions at single-mode optical fibers using Brillouin scattering,” Appl. Opt. 14, 3668–3670 (1980).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Proc. Camb. Phil. Soc. Math. Phys. Sci. (1)

M. A. Jaswon and R. D. Bhargave, “Two-dimensional elastic includion problems,” Proc. Camb. Phil. Soc. Math. Phys. Sci. 57, 669–680 (1961).
[Crossref]

Other (4)

C. R. Kurkjian, J. T. Krause, H. J. McSkimin, P. Andreatch, and T. B. Bateman, “Pressure dependence of elastic constants and grüneisen parameters in fused SiO2, GeO2, BeF2 and B2O3,” in Amorphous Materials, R. W. Douglas and B. Ellis, eds. (Wiley, New York, 1972).

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed. (McGraw-Hill, New York, 1951).

S. C. Rashleigh, “Polarimetric sensors: exploiting the axial stress in high birefringence fibers” presented at the First International Conference on Optical Fiber Sensors, London, April 1983.

This birefringent fiber is similar in structure to the single-polarization fiber of Ref. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of the tension-adjusted fiber attenuator. Fiber I is the polarization-preserving section, and fiber II is the fiber polarizer. A 10-cm length of fiber I is stretched to adjust the state of polarization at the joint S between the two sections of fiber. The diagrams at the bottom illustrate input coupling at 45° to the principal axes of fiber I and two extreme states of polarization at S giving maximum and minimum transmission through the polarizer.
Fig. 2
Fig. 2 Measured output in arbitrary units as a function of elongation of 10 cm of the birefringent fiber section for fiber JAY 9-22-83 at 628 nm. The ratio between maximum and minimum is 30 dB.
Fig. 3
Fig. 3 Collected data on three birefringent fibers. The measured tension birefringence is δn/(Δl/l), nxny is the normal fiber birefringence, and (ab)/(a + b) is the ellipticity of the stress cladding. The difference in Poisson’s ratio between the stress region and the silica substrate ν2ν1 is calculated using Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 x = 1 y = ν 1 E 1 σ 1 z , 2 x = 2 y = ν 2 E 2 σ 2 x , 1 z = 1 E 1 σ 1 z = Δ l l = 1 E 2 σ 2 z = 2 z ,
δ n ( Δ l / l ) = 1 2 n 3 ( P 12 P 11 ) ( ν 2 ν 1 1 ν 2 ) ( a b a + b ) ,

Metrics