Abstract

A passive fiber-optic resonator technique for rotation sensing has been investigated. Preliminary data show a noise-equivalent rotation-rate sensitivity of 0.5°/h (τ = 1 sec), which is an order of magnitude above the photon-shot-noise limit. The major sources of error and ways of reducing such errors are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Rosenthal, "Regenerative circulatory multiple-beam interferometry for the study of light-propagation effects," J. Opt. Soc. Am. 52, 1143 (1962).
    [CrossRef]
  2. S. Ezekiel and S. R. Balsamo, "Passive ring resonator laser gyroscope," Appl. Phys. Lett. 30, 478 (1977).
    [CrossRef]
  3. W. R. Carrington and R. Fredricks, Lear Siegler, Inc., Grand Rapids, Michigan 49508, "Development of an optical rate sensor," Final Rep. to U.S. Office of Naval Research N00014-73-C-0377, November 1973.
  4. V. Vali and R. W. Shorthill, "Fiber ring interferometer," Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  5. L. F. Stokes, M. Chodorow, and H. J. Shaw, "All-singlemode fiber resonator," Opt. Lett. 7, 288 (1982); "Sensitive all-single-mode-fiber resonant ring interferometer," IEEE J. Lightwave Technol. LT-1, 110 (1983).
    [CrossRef] [PubMed]
  6. R. E. Meyer and S. Ezekiel, "Fiberoptic resonator gyroscope," presented at First International Conference on Optical Fibre Sensors, IEE, London, April 26–28, 1983.
  7. S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
  8. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, "Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity," Opt. Lett. 7, 569 (1981).
    [CrossRef]
  9. This coupler was provided by Gould Research Laboratories.
  10. H. C. Lefèvre, "Single-mode fiber fractional wave devices and polarization controllers," Electron. Lett. 16, 778 (1980).
    [CrossRef]
  11. R. Ulrich, "Polarization stabilization on single-mode fiber," Appl. Phys. Lett. 35, 840 (1979).
    [CrossRef]
  12. D. N. Payne, "Review of birefringent fibers: preparing characteristic properties," in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983); J. R. Simpson, F. M. Sears, J. B. MacChesney, R. H. Stolen, W. Pleibel, and R. E. Howard, "Single polarization fiber," IEEE J. Lightwave Technol. LT-1, 370 (1983).
    [CrossRef]
  13. S. Ezekiel, J. L. Davis, and R. Hellwarth, "Intensity dependent nonreciprocal phase shift in a fiberoptic gyroscope," in Fiberoptic Rotation Sensors, S. Ezekiel and H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 332.
  14. J. Haavisto, "Thin film waveguides for inertial sensors," Proc. Soc. Photo-Opt. Instrum. Eng. 412, 221 (1983).

1983 (2)

D. N. Payne, "Review of birefringent fibers: preparing characteristic properties," in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983); J. R. Simpson, F. M. Sears, J. B. MacChesney, R. H. Stolen, W. Pleibel, and R. E. Howard, "Single polarization fiber," IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

J. Haavisto, "Thin film waveguides for inertial sensors," Proc. Soc. Photo-Opt. Instrum. Eng. 412, 221 (1983).

1982 (2)

S. Ezekiel, J. L. Davis, and R. Hellwarth, "Intensity dependent nonreciprocal phase shift in a fiberoptic gyroscope," in Fiberoptic Rotation Sensors, S. Ezekiel and H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 332.

L. F. Stokes, M. Chodorow, and H. J. Shaw, "All-singlemode fiber resonator," Opt. Lett. 7, 288 (1982); "Sensitive all-single-mode-fiber resonant ring interferometer," IEEE J. Lightwave Technol. LT-1, 110 (1983).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

H. C. Lefèvre, "Single-mode fiber fractional wave devices and polarization controllers," Electron. Lett. 16, 778 (1980).
[CrossRef]

1979 (1)

R. Ulrich, "Polarization stabilization on single-mode fiber," Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

1978 (1)

S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

1977 (1)

S. Ezekiel and S. R. Balsamo, "Passive ring resonator laser gyroscope," Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

1976 (1)

1962 (1)

Balsamo, S. R.

S. Ezekiel and S. R. Balsamo, "Passive ring resonator laser gyroscope," Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

Carrington, W. R.

W. R. Carrington and R. Fredricks, Lear Siegler, Inc., Grand Rapids, Michigan 49508, "Development of an optical rate sensor," Final Rep. to U.S. Office of Naval Research N00014-73-C-0377, November 1973.

Chodorow, M.

Cole, J. A.

S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

Davis, J. L.

S. Ezekiel, J. L. Davis, and R. Hellwarth, "Intensity dependent nonreciprocal phase shift in a fiberoptic gyroscope," in Fiberoptic Rotation Sensors, S. Ezekiel and H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 332.

Ezekiel, S.

R. E. Meyer and S. Ezekiel, "Fiberoptic resonator gyroscope," presented at First International Conference on Optical Fibre Sensors, IEE, London, April 26–28, 1983.

S. Ezekiel, J. L. Davis, and R. Hellwarth, "Intensity dependent nonreciprocal phase shift in a fiberoptic gyroscope," in Fiberoptic Rotation Sensors, S. Ezekiel and H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 332.

G. A. Sanders, M. G. Prentiss, and S. Ezekiel, "Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity," Opt. Lett. 7, 569 (1981).
[CrossRef]

S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

S. Ezekiel and S. R. Balsamo, "Passive ring resonator laser gyroscope," Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

Fredricks, R.

W. R. Carrington and R. Fredricks, Lear Siegler, Inc., Grand Rapids, Michigan 49508, "Development of an optical rate sensor," Final Rep. to U.S. Office of Naval Research N00014-73-C-0377, November 1973.

Haavisto, J.

J. Haavisto, "Thin film waveguides for inertial sensors," Proc. Soc. Photo-Opt. Instrum. Eng. 412, 221 (1983).

Harrison, J.

S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

Hellwarth, R.

S. Ezekiel, J. L. Davis, and R. Hellwarth, "Intensity dependent nonreciprocal phase shift in a fiberoptic gyroscope," in Fiberoptic Rotation Sensors, S. Ezekiel and H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 332.

Lefèvre, H. C.

H. C. Lefèvre, "Single-mode fiber fractional wave devices and polarization controllers," Electron. Lett. 16, 778 (1980).
[CrossRef]

Meyer, R. E.

R. E. Meyer and S. Ezekiel, "Fiberoptic resonator gyroscope," presented at First International Conference on Optical Fibre Sensors, IEE, London, April 26–28, 1983.

Payne, D. N.

D. N. Payne, "Review of birefringent fibers: preparing characteristic properties," in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983); J. R. Simpson, F. M. Sears, J. B. MacChesney, R. H. Stolen, W. Pleibel, and R. E. Howard, "Single polarization fiber," IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

Prentiss, M. G.

Rosenthal, A. H.

Sanders, G.

S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

Sanders, G. A.

Shaw, H. J.

Shorthill, R. W.

Stokes, L. F.

Ulrich, R.

R. Ulrich, "Polarization stabilization on single-mode fiber," Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

Vali, V.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Ezekiel and S. R. Balsamo, "Passive ring resonator laser gyroscope," Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

R. Ulrich, "Polarization stabilization on single-mode fiber," Appl. Phys. Lett. 35, 840 (1979).
[CrossRef]

Electron. Lett. (1)

H. C. Lefèvre, "Single-mode fiber fractional wave devices and polarization controllers," Electron. Lett. 16, 778 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

S. Ezekiel, J. A. Cole, J. Harrison, and G. Sanders, "Passive cavity optical rotation sensor," Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

J. Haavisto, "Thin film waveguides for inertial sensors," Proc. Soc. Photo-Opt. Instrum. Eng. 412, 221 (1983).

Other (5)

R. E. Meyer and S. Ezekiel, "Fiberoptic resonator gyroscope," presented at First International Conference on Optical Fibre Sensors, IEE, London, April 26–28, 1983.

D. N. Payne, "Review of birefringent fibers: preparing characteristic properties," in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983); J. R. Simpson, F. M. Sears, J. B. MacChesney, R. H. Stolen, W. Pleibel, and R. E. Howard, "Single polarization fiber," IEEE J. Lightwave Technol. LT-1, 370 (1983).
[CrossRef]

S. Ezekiel, J. L. Davis, and R. Hellwarth, "Intensity dependent nonreciprocal phase shift in a fiberoptic gyroscope," in Fiberoptic Rotation Sensors, S. Ezekiel and H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), p. 332.

W. R. Carrington and R. Fredricks, Lear Siegler, Inc., Grand Rapids, Michigan 49508, "Development of an optical rate sensor," Final Rep. to U.S. Office of Naval Research N00014-73-C-0377, November 1973.

This coupler was provided by Gould Research Laboratories.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of fiber-optic resonator gyroscope.

Fig. 2
Fig. 2

(a), (b) Output of PD 1 as a function of cavity length, with and without proper polarization alignment, respectively. Free spectral range, 66 MHz; finesse, 140. (c) PSD 1 output corresponding to (a).

Fig. 3
Fig. 3

Simultaneous outputs of PD 1 (above) and PD 2 as a function of cavity length: (a) without phase modulation, (b) with phase modulation.

Fig. 4
Fig. 4

(a) Output of PSD 1 on lock; τ = 0.3 sec. (b) Output of PSD 2 corresponding to (a), secondary loop open, without phase modulation (left trace) and with phase modulation (right trace). (c) Same as (b) right trace, on a more-sensitive scale, τ = 1 sec.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ f = 4 A λ P Ω ,
δ Ω ( λ P 4 A ) [ 2 Γ ( N ph η D τ ) 1 / 2 ] ,

Metrics