Abstract

Optical heterodyne spectroscopy has been performed with GaAlAs diode lasers by modulating the injection current at frequencies up to 2.6 GHz. This extremely convenient modulation scheme results in simultaneous frequency and amplitude modulation of the laser output. When the modulated laser output probes a narrow absorption line, a characteristic heterodyne beat signal occurs. We show that the observed spectra are similar to those obtained in pure frequency-modulation spectroscopy. The technique offers high sensitivity and fast detection speed and is applied to the detection of water-vapor absorption lines.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
    [Crossref] [PubMed]
  2. G. C. Bjorklund, W. Lenth, M. D. Levenson, C. Ortiz, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 107 (1981).
  3. R. G. DeVoe, R. G. Brewer, Phys. Rev. A 25, 2606 (1982).
    [Crossref]
  4. J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
    [Crossref]
  5. W. Lenth, C. Ortiz, G. C. Bjorklund, Opt. Lett. 6, 351 (1981).
    [Crossref] [PubMed]
  6. T. F. Gallagher, R. Kachru, F. Gounand, G. C. Bjorklund, W. Lenth, Opt. Lett. 7, 28 (1982).
    [Crossref] [PubMed]
  7. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
    [Crossref]
  8. See, for example, E. D. Hinkley, P. L. Kelley, Science 171, 635(1971).
    [Crossref] [PubMed]
  9. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
    [Crossref]

1983 (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[Crossref]

1982 (3)

T. F. Gallagher, R. Kachru, F. Gounand, G. C. Bjorklund, W. Lenth, Opt. Lett. 7, 28 (1982).
[Crossref] [PubMed]

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

R. G. DeVoe, R. G. Brewer, Phys. Rev. A 25, 2606 (1982).
[Crossref]

1981 (3)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[Crossref]

W. Lenth, C. Ortiz, G. C. Bjorklund, Opt. Lett. 6, 351 (1981).
[Crossref] [PubMed]

G. C. Bjorklund, W. Lenth, M. D. Levenson, C. Ortiz, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 107 (1981).

1980 (1)

1971 (1)

See, for example, E. D. Hinkley, P. L. Kelley, Science 171, 635(1971).
[Crossref] [PubMed]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[Crossref]

Bjorklund, G. C.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[Crossref]

T. F. Gallagher, R. Kachru, F. Gounand, G. C. Bjorklund, W. Lenth, Opt. Lett. 7, 28 (1982).
[Crossref] [PubMed]

W. Lenth, C. Ortiz, G. C. Bjorklund, Opt. Lett. 6, 351 (1981).
[Crossref] [PubMed]

G. C. Bjorklund, W. Lenth, M. D. Levenson, C. Ortiz, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 107 (1981).

G. C. Bjorklund, Opt. Lett. 5, 15 (1980).
[Crossref] [PubMed]

Brewer, R. G.

R. G. DeVoe, R. G. Brewer, Phys. Rev. A 25, 2606 (1982).
[Crossref]

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[Crossref]

DeVoe, R. G.

R. G. DeVoe, R. G. Brewer, Phys. Rev. A 25, 2606 (1982).
[Crossref]

Gallagher, T. F.

Gounand, F.

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[Crossref]

Hinkley, E. D.

See, for example, E. D. Hinkley, P. L. Kelley, Science 171, 635(1971).
[Crossref] [PubMed]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[Crossref]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

Kachru, R.

Kelley, P. L.

See, for example, E. D. Hinkley, P. L. Kelley, Science 171, 635(1971).
[Crossref] [PubMed]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

Lenth, W.

Levenson, M. D.

G. C. Bjorklund, W. Lenth, M. D. Levenson, C. Ortiz, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 107 (1981).

Ortiz, C.

G. C. Bjorklund, W. Lenth, M. D. Levenson, C. Ortiz, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 107 (1981).

W. Lenth, C. Ortiz, G. C. Bjorklund, Opt. Lett. 6, 351 (1981).
[Crossref] [PubMed]

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[Crossref]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[Crossref]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[Crossref]

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[Crossref]

Opt. Commun. (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

R. G. DeVoe, R. G. Brewer, Phys. Rev. A 25, 2606 (1982).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. C. Bjorklund, W. Lenth, M. D. Levenson, C. Ortiz, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 107 (1981).

Science (1)

See, for example, E. D. Hinkley, P. L. Kelley, Science 171, 635(1971).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for heterodyne spectroscopy with diode lasers.

Fig. 2
Fig. 2

Power spectrum of diode-laser output with the injection current modulated at 2.6 GHz.

Fig. 3
Fig. 3

Heterodyne-spectroscopy signals of Fabry–Perot resonance: (a) in-phase component, (b) quadrature component.

Fig. 4
Fig. 4

Heterodyne spectra of water-vapor absorption line at λ = 816.7 nm: (a) in-phase component, (b) quadrature component.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 [ 1 + M sin ( ω m t + ψ ) ] × exp [ i ( ω 0 t + β sin ω m t ) ] ,
E 2 ( ω 0 ) = J 0 2 ( β ) + M 2 J 1 2 ( β ) cos 2 ψ , E 2 ( ω 0 ± ω m ) = J 1 2 ( β ) + M 2 4 { [ J 0 2 ( β ) + J 2 2 ( β ) ] } M 2 2 J 0 ( β ) J 2 ( β ) cos 2 ψ ± M [ J 0 ( β ) + J 2 ( β ) ] sin ψ .
I ( t ) e 2 δ 0 { 1 + [ β ( δ 1 δ 1 ) + M ( ϕ 1 ϕ 1 ) ] cos ω m t + [ β ( 2 ϕ 0 + ϕ 1 + ϕ 1 ) + M ( 2 + 2 δ 0 δ 1 δ 1 ) ] sin ω m t } ,

Metrics