Abstract

A technique is demonstrated for measuring velocity at multiple locations in a plane of a gaseous flowfield using with fluorescence detection from iodine molecules, excited by a sheet of tunable single-axial-mode argon-ion laser at 514.5 nm. Measurements were made simultaneously at 10,000 points in iodine-seeded supersonic flowfield with a 100 × 100 element photodiode array camera and were found to agree in well with a numerical solution for the veloctiy field The accuracy with which a component of velocity can be measured is limited, is the current approach, by the iodine linewidth to about ±5 m/sec.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, “Selective excitation spectroscopy and some possible applications,” J. Appl. Phys. 39, 5232–5245 (1968).
    [CrossRef]
  2. E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
    [CrossRef]
  3. G. C. Herring, W. M. Fairbank, C. Y. She, “Observation and measurement of molecular flow using stimulated Raman gain spectroscopy,” IEEE J. Quantum Electron. QE-17, 1975–1976 (1981).
    [CrossRef]
  4. R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
    [CrossRef]
  5. C. W. Peterson, “A survey of the utilitarian aspects of advanced flowfield diagnostic techniques,” AIAA J. 17, 1352–1360 (1979).
    [CrossRef]
  6. R. B. Miles, E. Udd, M. Zimmermann, “Quantitative flow visualization in sodium vapor seeded hypersonic helium,” Appl. Phys. Lett. 32, 317–319 (1978).
    [CrossRef]
  7. J. C. McDaniel, “Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows,” Ph.D. Thesis, Stanford University, 1981.
  8. P. A. Thompson, Compressible Fluid Dynamics (McGraw-Hill, New York, 1972).
  9. M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A, 6, 10 (1972).
    [CrossRef]
  10. J. C. McDaniel, D. Baganoff, R. L. Byer, “Density measurement in compressible flows using off-resonant laser-induced fluorescence,” Phys. Fluids 25, 1105–1107 (1982).
    [CrossRef]

1982 (1)

J. C. McDaniel, D. Baganoff, R. L. Byer, “Density measurement in compressible flows using off-resonant laser-induced fluorescence,” Phys. Fluids 25, 1105–1107 (1982).
[CrossRef]

1981 (2)

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

G. C. Herring, W. M. Fairbank, C. Y. She, “Observation and measurement of molecular flow using stimulated Raman gain spectroscopy,” IEEE J. Quantum Electron. QE-17, 1975–1976 (1981).
[CrossRef]

1979 (2)

R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
[CrossRef]

C. W. Peterson, “A survey of the utilitarian aspects of advanced flowfield diagnostic techniques,” AIAA J. 17, 1352–1360 (1979).
[CrossRef]

1978 (1)

R. B. Miles, E. Udd, M. Zimmermann, “Quantitative flow visualization in sodium vapor seeded hypersonic helium,” Appl. Phys. Lett. 32, 317–319 (1978).
[CrossRef]

1972 (1)

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A, 6, 10 (1972).
[CrossRef]

1968 (1)

R. M. Measures, “Selective excitation spectroscopy and some possible applications,” J. Appl. Phys. 39, 5232–5245 (1968).
[CrossRef]

Anderson, J. B.

R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
[CrossRef]

Baganoff, D.

J. C. McDaniel, D. Baganoff, R. L. Byer, “Density measurement in compressible flows using off-resonant laser-induced fluorescence,” Phys. Fluids 25, 1105–1107 (1982).
[CrossRef]

Byer, R. L.

J. C. McDaniel, D. Baganoff, R. L. Byer, “Density measurement in compressible flows using off-resonant laser-induced fluorescence,” Phys. Fluids 25, 1105–1107 (1982).
[CrossRef]

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
[CrossRef]

Fairbank, W. M.

G. C. Herring, W. M. Fairbank, C. Y. She, “Observation and measurement of molecular flow using stimulated Raman gain spectroscopy,” IEEE J. Quantum Electron. QE-17, 1975–1976 (1981).
[CrossRef]

Gallager, R. J.

R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
[CrossRef]

Gustafson, E. K.

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

Herring, G. C.

G. C. Herring, W. M. Fairbank, C. Y. She, “Observation and measurement of molecular flow using stimulated Raman gain spectroscopy,” IEEE J. Quantum Electron. QE-17, 1975–1976 (1981).
[CrossRef]

Levenson, M. D.

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A, 6, 10 (1972).
[CrossRef]

McDaniel, J. C.

J. C. McDaniel, D. Baganoff, R. L. Byer, “Density measurement in compressible flows using off-resonant laser-induced fluorescence,” Phys. Fluids 25, 1105–1107 (1982).
[CrossRef]

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

J. C. McDaniel, “Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows,” Ph.D. Thesis, Stanford University, 1981.

Measures, R. M.

R. M. Measures, “Selective excitation spectroscopy and some possible applications,” J. Appl. Phys. 39, 5232–5245 (1968).
[CrossRef]

Miles, R. B.

R. B. Miles, E. Udd, M. Zimmermann, “Quantitative flow visualization in sodium vapor seeded hypersonic helium,” Appl. Phys. Lett. 32, 317–319 (1978).
[CrossRef]

Peterson, C. W.

C. W. Peterson, “A survey of the utilitarian aspects of advanced flowfield diagnostic techniques,” AIAA J. 17, 1352–1360 (1979).
[CrossRef]

Schawlow, A. L.

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A, 6, 10 (1972).
[CrossRef]

She, C. Y.

G. C. Herring, W. M. Fairbank, C. Y. She, “Observation and measurement of molecular flow using stimulated Raman gain spectroscopy,” IEEE J. Quantum Electron. QE-17, 1975–1976 (1981).
[CrossRef]

Talbot, L.

R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
[CrossRef]

Thompson, P. A.

P. A. Thompson, Compressible Fluid Dynamics (McGraw-Hill, New York, 1972).

Udd, E.

R. B. Miles, E. Udd, M. Zimmermann, “Quantitative flow visualization in sodium vapor seeded hypersonic helium,” Appl. Phys. Lett. 32, 317–319 (1978).
[CrossRef]

Zimmermann, M.

R. B. Miles, E. Udd, M. Zimmermann, “Quantitative flow visualization in sodium vapor seeded hypersonic helium,” Appl. Phys. Lett. 32, 317–319 (1978).
[CrossRef]

AIAA J. (2)

R. J. Cattolica, R. J. Gallager, J. B. Anderson, L. Talbot, “Aerodynamic separation of gases by velocity slip in freejet expansions,” AIAA J. 17, 344–355 (1979).
[CrossRef]

C. W. Peterson, “A survey of the utilitarian aspects of advanced flowfield diagnostic techniques,” AIAA J. 17, 1352–1360 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

R. B. Miles, E. Udd, M. Zimmermann, “Quantitative flow visualization in sodium vapor seeded hypersonic helium,” Appl. Phys. Lett. 32, 317–319 (1978).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

G. C. Herring, W. M. Fairbank, C. Y. She, “Observation and measurement of molecular flow using stimulated Raman gain spectroscopy,” IEEE J. Quantum Electron. QE-17, 1975–1976 (1981).
[CrossRef]

J. Appl. Phys. (1)

R. M. Measures, “Selective excitation spectroscopy and some possible applications,” J. Appl. Phys. 39, 5232–5245 (1968).
[CrossRef]

Phys. Fluids (1)

J. C. McDaniel, D. Baganoff, R. L. Byer, “Density measurement in compressible flows using off-resonant laser-induced fluorescence,” Phys. Fluids 25, 1105–1107 (1982).
[CrossRef]

Phys. Rev. A, (1)

M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A, 6, 10 (1972).
[CrossRef]

Other (2)

J. C. McDaniel, “Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows,” Ph.D. Thesis, Stanford University, 1981.

P. A. Thompson, Compressible Fluid Dynamics (McGraw-Hill, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of experimental setup showing iodine-seeded underexpanded jet flowfield, probed by a thin sheet of argon-ion laser radiation, and imaging of the fluorescence distribution on a photodiode array camera.

Fig. 2
Fig. 2

Photographs and corresponding digital images (shown with three levels of intensity) of the fluorescence distribution for two laser frequencies, ν1 and ν2, illustrating the effect of the Doppler shift in the underexpanded jet. Flow is from left to right, through a 3-mm exit-diameter conical nozzle. Laser sheet propagates from right to left and intersects the jet centerline at a 33° angle.

Fig. 3
Fig. 3

Fluorescence intensity at discrete laser frequencies at a point in the flowfield and from the iodine reference cell for the two laser sheet directions. Frequency shift of the iodine absorption line relative to the unshifted reference line is a direct measure of the velocity component in the direction of the laser sheet at this point in the flowfield.

Fig. 4
Fig. 4

Underexpanded-jet velocity profiles located 3, 4, 5, and 6 nozzle radii downstream of the nozzle exit. The coordinate system is cylindrical with Z along the jet centerline and R normal to it, both normalized by the jet radius RJ. Measured velocity vectors, solid arrows, are shown at nine discrete points along each line. Calculated velocity vectors, dotted arrows, are shown for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ω D = k · u ,

Metrics