Abstract

A comparison is made between theoretical and experimental results for cooperative scattering between two spheres. The overall agreement between theory and experiment is quite good. Also, a large side-scattering resonance that was measured to be 44 times larger than that which is due to a single sphere was calculated actually to be 47.6 times larger.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Wang, J. M. Greenberg, D. W. Schuerman, Opt. Lett. 6, 543–545 (1981).
    [CrossRef] [PubMed]
  2. D. W. Schuerman, R. T. Wang, “Experimental results of multiple scattering,” Final Rep., ARCSL-CR-81-003 (U.S. Army Chemical Systems Laboratory, Aberdeen Proving Ground, Md., July1980).
  3. J. H. Bruning, Y. T. Lo, IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).
    [CrossRef]
  4. J. H. Bruning, Y. T. Lo, “Multiple scattering by spheres,” Tech. Rep. 69–5 (Antenna Laboratory, University of Illinois, Urbana, Ill., 1969).
  5. G. W. Kattawar, T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 170–190.

1981 (1)

1971 (1)

J. H. Bruning, Y. T. Lo, IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).
[CrossRef]

Bruning, J. H.

J. H. Bruning, Y. T. Lo, IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).
[CrossRef]

J. H. Bruning, Y. T. Lo, “Multiple scattering by spheres,” Tech. Rep. 69–5 (Antenna Laboratory, University of Illinois, Urbana, Ill., 1969).

Greenberg, J. M.

Humphreys, T. J.

G. W. Kattawar, T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 170–190.

Kattawar, G. W.

G. W. Kattawar, T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 170–190.

Lo, Y. T.

J. H. Bruning, Y. T. Lo, IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).
[CrossRef]

J. H. Bruning, Y. T. Lo, “Multiple scattering by spheres,” Tech. Rep. 69–5 (Antenna Laboratory, University of Illinois, Urbana, Ill., 1969).

Schuerman, D. W.

R. T. Wang, J. M. Greenberg, D. W. Schuerman, Opt. Lett. 6, 543–545 (1981).
[CrossRef] [PubMed]

D. W. Schuerman, R. T. Wang, “Experimental results of multiple scattering,” Final Rep., ARCSL-CR-81-003 (U.S. Army Chemical Systems Laboratory, Aberdeen Proving Ground, Md., July1980).

Wang, R. T.

R. T. Wang, J. M. Greenberg, D. W. Schuerman, Opt. Lett. 6, 543–545 (1981).
[CrossRef] [PubMed]

D. W. Schuerman, R. T. Wang, “Experimental results of multiple scattering,” Final Rep., ARCSL-CR-81-003 (U.S. Army Chemical Systems Laboratory, Aberdeen Proving Ground, Md., July1980).

IEEE Trans. Antennas Propag. (1)

J. H. Bruning, Y. T. Lo, IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).
[CrossRef]

Opt. Lett. (1)

Other (3)

D. W. Schuerman, R. T. Wang, “Experimental results of multiple scattering,” Final Rep., ARCSL-CR-81-003 (U.S. Army Chemical Systems Laboratory, Aberdeen Proving Ground, Md., July1980).

J. H. Bruning, Y. T. Lo, “Multiple scattering by spheres,” Tech. Rep. 69–5 (Antenna Laboratory, University of Illinois, Urbana, Ill., 1969).

G. W. Kattawar, T. J. Humphreys, “Electromagnetic scattering from two identical pseudospheres,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 170–190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Extinction-coefficient calculations for two spheres as a function of distance of separation (kd). The spheres have a size parameter x = 0.9283 and a refractive index N = 1.54. The case α = 0° corresponds to end-on incidence, whereas α = 90° corresponds to broadside incidence. The subscript l refers to the incident beam polarized in the scattering plane, whereas r refers to incident polarization perpendicular to the scattering plane. The horizontal solid line marked NIS is for two noninteracting spheres.

Fig. 2
Fig. 2

A–C, PQ plots for the comparison between theory and experiment for different sizes and refractive indices for two spheres in contact and for orientations from end-on incidence (0°) to broadside incidence (90°). The point labeled NIS is the PQ value obtained for noninteracting spheres. Curve D is for a case of larger separation.

Fig. 3
Fig. 3

A and B, scattered radiance at 90° perpendicular to the scattering plane [Ir(90°)] as a function of orientation angle α. Note that at α = 45° the symmetry axis of the particle bisects the scattering angle corresponding to specular reflection.

Tables (1)

Tables Icon

Table 1 Comparison between Theory and Experiment of Scattering Amplitudes and Phase Angles for Contacting and Almost-Contacting Spheres for Three Different Sizes as a Function of Orientation Anglea

Metrics