Abstract

We report new experimental data for an all-fiber gyroscope with a noise density of 0.004(deg/h)2/Hz. This is compatible with the requirements for inertial navigation. Noise contributions from the coherent Rayleigh backscatter when a phase-modulation bias scheme is used and also from acoustic vibrations are discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long-term stability,” Opt. Lett. 6, 502 (1981).
    [CrossRef] [PubMed]
  2. K. Böhm, P. Russer, E. Weidel, R. Ulrich, “Low-noise fiber-optic rotation sensing,” Opt. Lett. 6, 64 (1981).
    [CrossRef] [PubMed]
  3. K. Böhm, P. Martin, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
    [CrossRef]
  4. J. L. Davis, S. Ezekiel, “Closed-loop, low-noise fiberoptic rotation sensor,” Opt. Lett. 6, 505 (1981).
    [CrossRef] [PubMed]
  5. We understand that improved performance over that published in Ref. 9 now exists [S. Ezekiel, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (personal communication)].
  6. J. Feldman, S. Helfant, “A laser gyro evaluation plan and test results,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 196 (1978).
  7. C. C. Cutler, S. A. Newton, H. J. Shaw, “Limitation of rotation sensing by scattering,” Opt. Lett. 5, 488 (1980).
    [CrossRef] [PubMed]
  8. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single mode fiber optic gyroscope,” in Proceedings of the international Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).
  9. A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
    [CrossRef]
  10. K. Böhm, K. Petermann, E. Weidel, “Sensitivity of a fiber-optic gyroscope to environmental magnetic field,” Opt. Lett. 7, 180, 1982.
    [CrossRef] [PubMed]
  11. S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).
  12. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Compensation of the optical Kerr effect in fiber gyroscopes,” Opt. Lett. 7, 282 (1982).
    [CrossRef] [PubMed]
  13. H. Arditty, M. Papuchon, C. Puech, K. Thyagarapan, “Recent developments in guided wave optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America; Washington, D.C., 1980), paper TuC2.
  14. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173 (1980).
    [CrossRef] [PubMed]
  15. A. J. Rogers, “Polarization optical time domain reflectometry,” Electron. Lett. 16, 489 (1980).
    [CrossRef]

1982 (2)

1981 (4)

1980 (4)

A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
[CrossRef]

A. J. Rogers, “Polarization optical time domain reflectometry,” Electron. Lett. 16, 489 (1980).
[CrossRef]

R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173 (1980).
[CrossRef] [PubMed]

C. C. Cutler, S. A. Newton, H. J. Shaw, “Limitation of rotation sensing by scattering,” Opt. Lett. 5, 488 (1980).
[CrossRef] [PubMed]

1978 (1)

J. Feldman, S. Helfant, “A laser gyro evaluation plan and test results,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 196 (1978).

Arditty, H.

H. Arditty, M. Papuchon, C. Puech, K. Thyagarapan, “Recent developments in guided wave optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America; Washington, D.C., 1980), paper TuC2.

Bergh, R. A.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Compensation of the optical Kerr effect in fiber gyroscopes,” Opt. Lett. 7, 282 (1982).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long-term stability,” Opt. Lett. 6, 502 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single mode fiber optic gyroscope,” in Proceedings of the international Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

Böhm, K.

Cutler, C. C.

Dandridge, A.

A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
[CrossRef]

Davis, J. L.

J. L. Davis, S. Ezekiel, “Closed-loop, low-noise fiberoptic rotation sensor,” Opt. Lett. 6, 505 (1981).
[CrossRef] [PubMed]

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

Ezekiel, S.

J. L. Davis, S. Ezekiel, “Closed-loop, low-noise fiberoptic rotation sensor,” Opt. Lett. 6, 505 (1981).
[CrossRef] [PubMed]

We understand that improved performance over that published in Ref. 9 now exists [S. Ezekiel, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (personal communication)].

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

Feldman, J.

J. Feldman, S. Helfant, “A laser gyro evaluation plan and test results,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 196 (1978).

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
[CrossRef]

Helfant, S.

J. Feldman, S. Helfant, “A laser gyro evaluation plan and test results,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 196 (1978).

Hellwarth, R.

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Compensation of the optical Kerr effect in fiber gyroscopes,” Opt. Lett. 7, 282 (1982).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long-term stability,” Opt. Lett. 6, 502 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single mode fiber optic gyroscope,” in Proceedings of the international Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

Martin, P.

K. Böhm, P. Martin, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

Miles, R. O.

A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
[CrossRef]

Newton, S. A.

Papuchon, M.

H. Arditty, M. Papuchon, C. Puech, K. Thyagarapan, “Recent developments in guided wave optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America; Washington, D.C., 1980), paper TuC2.

Petermann, K.

K. Böhm, K. Petermann, E. Weidel, “Sensitivity of a fiber-optic gyroscope to environmental magnetic field,” Opt. Lett. 7, 180, 1982.
[CrossRef] [PubMed]

K. Böhm, P. Martin, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

Puech, C.

H. Arditty, M. Papuchon, C. Puech, K. Thyagarapan, “Recent developments in guided wave optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America; Washington, D.C., 1980), paper TuC2.

Rogers, A. J.

A. J. Rogers, “Polarization optical time domain reflectometry,” Electron. Lett. 16, 489 (1980).
[CrossRef]

Russer, P.

Shaw, H. J.

Thyagarapan, K.

H. Arditty, M. Papuchon, C. Puech, K. Thyagarapan, “Recent developments in guided wave optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America; Washington, D.C., 1980), paper TuC2.

Tveten, A. B.

A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
[CrossRef]

Ulrich, R.

Weidel, E.

Appl. Phys. Lett. (1)

A. Dandridge, A. B. Tveten, R. O. Miles, T. G. Giallorenzi, “Laser noise in fiber interferometer,” Appl. Phys. Lett. 37, 526 (1980).
[CrossRef]

Electron. Lett. (2)

K. Böhm, P. Martin, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fiber gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

A. J. Rogers, “Polarization optical time domain reflectometry,” Electron. Lett. 16, 489 (1980).
[CrossRef]

Opt. Lett. (7)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Feldman, S. Helfant, “A laser gyro evaluation plan and test results,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 196 (1978).

Other (4)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single mode fiber optic gyroscope,” in Proceedings of the international Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

We understand that improved performance over that published in Ref. 9 now exists [S. Ezekiel, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (personal communication)].

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotation Sensors and Related Technologies (Springer-Verlag, Berlin, to be published).

H. Arditty, M. Papuchon, C. Puech, K. Thyagarapan, “Recent developments in guided wave optical rotation sensors,” in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America; Washington, D.C., 1980), paper TuC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Output noise level for a time constant of 1 sec, with system at rest.

Fig. 2
Fig. 2

Long-term bias stability with a time constant of 30 sec: (a) full power, (b) 50-fold power reduction.

Fig. 3
Fig. 3

Schematic diagram for backscattering noise calculations.

Metrics