Abstract

We have constructed a spatially scanning coherent anti-Stokes Raman spectroscopic (CARS) apparatus that allows us to image the distribution of distinct chemical species in a microscopic sample region. Images of onion-skin cells have been obtained by using the CARS signal produced by the 2450-cm−1 band of deuterated water. Future applications will be discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Abraham, E. S. Etz, “Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe,” Science 206, 716–718 (1979).
    [CrossRef] [PubMed]
  2. E. S. Etz, “Raman microprobe analysis: principles and applications,” in Scanning Electron Microscopy/1979/I (IIT Research Institute, Chicago, Ill., 1979), pp. 67–82.
  3. P. Dhamelincourt, P. Bisson, “Principe et realisation d’un microscope optique utilisant l’effet Raman,” Microsc. Acta 79, 267–276 (1977).
  4. P. R. Régnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
    [CrossRef]
  5. O. V. Murphy, M. B. Long, R. K. Chang, A. C. Eckbreth, “spatially resolved coherent anti-Stokes raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169 (1979).
    [CrossRef] [PubMed]

1979 (2)

J. L. Abraham, E. S. Etz, “Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe,” Science 206, 716–718 (1979).
[CrossRef] [PubMed]

O. V. Murphy, M. B. Long, R. K. Chang, A. C. Eckbreth, “spatially resolved coherent anti-Stokes raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169 (1979).
[CrossRef] [PubMed]

1977 (1)

P. Dhamelincourt, P. Bisson, “Principe et realisation d’un microscope optique utilisant l’effet Raman,” Microsc. Acta 79, 267–276 (1977).

1973 (1)

P. R. Régnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Abraham, J. L.

J. L. Abraham, E. S. Etz, “Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe,” Science 206, 716–718 (1979).
[CrossRef] [PubMed]

Bisson, P.

P. Dhamelincourt, P. Bisson, “Principe et realisation d’un microscope optique utilisant l’effet Raman,” Microsc. Acta 79, 267–276 (1977).

Chang, R. K.

Dhamelincourt, P.

P. Dhamelincourt, P. Bisson, “Principe et realisation d’un microscope optique utilisant l’effet Raman,” Microsc. Acta 79, 267–276 (1977).

Eckbreth, A. C.

Etz, E. S.

J. L. Abraham, E. S. Etz, “Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe,” Science 206, 716–718 (1979).
[CrossRef] [PubMed]

E. S. Etz, “Raman microprobe analysis: principles and applications,” in Scanning Electron Microscopy/1979/I (IIT Research Institute, Chicago, Ill., 1979), pp. 67–82.

Long, M. B.

Murphy, O. V.

Régnier, P. R.

P. R. Régnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Taran, J. P. E.

P. R. Régnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Appl. Phys. Lett. (1)

P. R. Régnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Microsc. Acta (1)

P. Dhamelincourt, P. Bisson, “Principe et realisation d’un microscope optique utilisant l’effet Raman,” Microsc. Acta 79, 267–276 (1977).

Opt. Lett. (1)

Science (1)

J. L. Abraham, E. S. Etz, “Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe,” Science 206, 716–718 (1979).
[CrossRef] [PubMed]

Other (1)

E. S. Etz, “Raman microprobe analysis: principles and applications,” in Scanning Electron Microscopy/1979/I (IIT Research Institute, Chicago, Ill., 1979), pp. 67–82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the CARS microscope apparatus. A conventional microscope is used to collect light emerging from the sample and is represented by a single lens to the right of the sample. Beam separation and focusing angles are exaggerated for clarity.

Fig. 2
Fig. 2

Demonstration of the molecular selectivity of the CARS microscope. The area viewed contains an interface region between acetonitrile (bottom) and octane (top). (a) Signal from the acetonitrile region when the dye lasers are tuned to 2250 cm−1. (b) Signal from the octane when the lasers are tuned to 2500 cm−1. The scanned area is 300 μm × 300 μm.

Fig. 3
Fig. 3

White-light and CARS images of onion-skin cells that have been soaked in D2O. (a), (c) Transmission white-light images with slightly different focusing conditions, (b), (d) CARS images of the same regions as (a) and (c) when lasers are tuned to the 2450-cm−1 band of D2O. The CARS images were obtained in 2 sec. The onion-skin cells were soaked in D2O for 4 h.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P AS = K | χ | 2 I p 2 I s d A ,
Δ d = f Δ θ ,

Metrics