Abstract

An all-fiber-ring resonator has been constructed using a single strand of single-mode optical fiber and a directional coupler. Derivation of the resonator finesse in terms of fiber and directional coupler parameters is given. A finesse of 80 has been achieved experimentally. Applications of such a fiber-ring resonator are discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electon. Lett. 16, 260 (1980).
    [CrossRef]
  2. J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
    [CrossRef]
  3. M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, No. 4 (1982).
  4. H. C. Lefevre, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett. 16, 778 (1980).
    [CrossRef]
  5. K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
    [CrossRef]
  6. R. M. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett. 20, 62 (1972).
    [CrossRef]

1982 (2)

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
[CrossRef]

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, No. 4 (1982).

1980 (2)

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett. 16, 778 (1980).
[CrossRef]

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electon. Lett. 16, 260 (1980).
[CrossRef]

1976 (1)

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[CrossRef]

1972 (1)

R. M. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Bergh, R. A.

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electon. Lett. 16, 260 (1980).
[CrossRef]

Bowers, J. E.

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, No. 4 (1982).

Hill, K. O.

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[CrossRef]

Ippen, E. P.

R. M. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[CrossRef]

Kotler, G.

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electon. Lett. 16, 260 (1980).
[CrossRef]

Lefevre, H. C.

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett. 16, 778 (1980).
[CrossRef]

Newton, S. A.

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
[CrossRef]

Shaw, H. J.

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
[CrossRef]

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, No. 4 (1982).

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electon. Lett. 16, 260 (1980).
[CrossRef]

Sorin, W. V.

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
[CrossRef]

Stolen, R. M.

R. M. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Tynes, A. R.

R. M. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Appl. Phys. Lett. (2)

K. O. Hill, B. S. Kawasaki, D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[CrossRef]

R. M. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Electon. Lett. (1)

R. A. Bergh, G. Kotler, H. J. Shaw, “Single-mode fiber optic directional coupler,” Electon. Lett. 16, 260 (1980).
[CrossRef]

Electron. Lett. (2)

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single mode fibre recirculating delay lines,” Electron. Lett. 18, 110 (1982).
[CrossRef]

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett. 16, 778 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. QE-18, No. 4 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of an all-single-mode fiber resonator.

Fig. 2
Fig. 2

(a) Theoretical resonator circulating intensity and (b) output intensity for a 5 and 10% coupler insertion power loss. The fiber ring length is 3 m, and the loss is −8.3 dB/km (2α0L = 0.0057).

Fig. 3
Fig. 3

Experimental configuration for the fiber resonant as a scanning optical-spectrum analyzer.

Fig. 4
Fig. 4

Triangle voltage (30 V peak to peak) applied to the phase modulator and resonator output power, showing a finesse of approximately 70.

Fig. 5
Fig. 5

Misalignment of the polarization controller yields resonance of two independent polarization modes.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

| E 3 | 2 + | E 4 | 2 = ( 1 γ 0 ) ( | E 1 | 2 + | E 2 | 2 ) ,
E 3 = ( 1 γ 0 ) 1 / 2 [ ( 1 κ ) 1 / 2 E 1 + j κ E 2 ] , E 4 = ( 1 γ 0 ) 1 / 2 [ j κ E 1 + ( 1 κ ) 1 / 2 E 2 ] ,
E 2 = E 3 e α 0 L e j β L , β = n ω / c ,
β L = q 2 π π / 2 ,
κ r = ( 1 γ 0 ) e 2 α 0 L .
| E 3 E 1 | 2 = ( 1 γ 0 ) ( 1 κ r ) ( 1 + κ r ) 2 4 κ r sin 2 ( β L 2 π 4 ) ,
| E 4 E 1 | 2 = ( 1 γ 0 ) × [ 1 ( 1 κ r ) 2 ( 1 + κ r ) 2 4 κ r sin 2 ( β L 2 π 4 ) ] .
| E 3 E 1 | max 2 = 1 γ 0 1 κ r .
Δ f = c n L { 1 2 π sin 1 [ 1 ( 1 κ r ) 2 4 κ r ] 1 / 2 } .
Δ f c n L 1 κ r π κ r .
F = FSR Δ f = π κ r 1 κ r .
τ c n L / c δ ,
τ c n L / c 2 ( 1 κ r ) .

Metrics