Abstract

Artificial Kerr media made from liquid suspensions of submicrometer particles were used as a new type of nonlinear medium for observing cw self-focusing and self-trapping of laser beams. Self-trapping of TEM00-mode beams and higher-order TEM01- and TEM01*-mode beams were investigated. Saturation-free operation down to filament diameters of ~2 μm was observed. The independence of the critical power for self-trapping on the beam diameter in the unsaturated regime was confirmed for the first time to our knowledge. Values of the nonlinear coefficient were determined for a range of particle diameters from 0.038 to 0.234 μm.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Smith, A. Ashkin, W. J. Tomlinson, Opt. Lett. 6, 284 (1981).
    [CrossRef] [PubMed]
  2. A. Ashkin, Science 210, 1081 (1980).
    [CrossRef] [PubMed]
  3. G. A. Askar’yan, Zh. Eksp. Teor. Fiz. 42, 1567 (1962) [Sov. Phys. JETP 15, 1088 (1962)].
  4. S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, part E2.
  5. F. W. Dabby, J. R. Whinnery, Appl. Phys. Lett. 13, 284 (1968).
    [CrossRef]
  6. J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
    [CrossRef]
  7. A. C. Tam, W. Happer, Phys. Rev. Lett. 38, 278 (1977).
    [CrossRef]
  8. R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
    [CrossRef]
  9. W. G. Wagner, H. A. Haus, J. H. Marburger, Phys. Rev. 172, 256 (1968).
    [CrossRef]
  10. C. C. Wang, Phys. Rev. Lett. 16, 344 (1966).
    [CrossRef]
  11. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
    [CrossRef] [PubMed]
  12. Dow Chemical Company uniform polystyrene latex particles. The refractive index of the spheres is ~1.59, and that of the surrounding liquid is ~ 1.33.
  13. P. W. Smith, P. J. Maloney, A. Askin, Opt. Lett. (to be published).

1981 (2)

1980 (1)

A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

1977 (1)

A. C. Tam, W. Happer, Phys. Rev. Lett. 38, 278 (1977).
[CrossRef]

1974 (1)

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

1968 (2)

F. W. Dabby, J. R. Whinnery, Appl. Phys. Lett. 13, 284 (1968).
[CrossRef]

W. G. Wagner, H. A. Haus, J. H. Marburger, Phys. Rev. 172, 256 (1968).
[CrossRef]

1966 (1)

C. C. Wang, Phys. Rev. Lett. 16, 344 (1966).
[CrossRef]

1964 (1)

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

1962 (1)

G. A. Askar’yan, Zh. Eksp. Teor. Fiz. 42, 1567 (1962) [Sov. Phys. JETP 15, 1088 (1962)].

Akhmanov, S. A.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, part E2.

Ashkin, A.

P. W. Smith, A. Ashkin, W. J. Tomlinson, Opt. Lett. 6, 284 (1981).
[CrossRef] [PubMed]

A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

Askar’yan, G. A.

G. A. Askar’yan, Zh. Eksp. Teor. Fiz. 42, 1567 (1962) [Sov. Phys. JETP 15, 1088 (1962)].

Askin, A.

P. W. Smith, P. J. Maloney, A. Askin, Opt. Lett. (to be published).

Bjorkholm, J. E.

Chiao, R. Y.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Dabby, F. W.

F. W. Dabby, J. R. Whinnery, Appl. Phys. Lett. 13, 284 (1968).
[CrossRef]

Garmire, E.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Happer, W.

A. C. Tam, W. Happer, Phys. Rev. Lett. 38, 278 (1977).
[CrossRef]

Haus, H. A.

W. G. Wagner, H. A. Haus, J. H. Marburger, Phys. Rev. 172, 256 (1968).
[CrossRef]

Kaplan, A. E.

Khokhlov, R. V.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, part E2.

Maloney, P. J.

P. W. Smith, P. J. Maloney, A. Askin, Opt. Lett. (to be published).

Marburger, J. H.

W. G. Wagner, H. A. Haus, J. H. Marburger, Phys. Rev. 172, 256 (1968).
[CrossRef]

Smith, P. W.

Sukhorukov, A. P.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, part E2.

Tam, A. C.

A. C. Tam, W. Happer, Phys. Rev. Lett. 38, 278 (1977).
[CrossRef]

Tomlinson, W. J.

Townes, C. H.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Wagner, W. G.

W. G. Wagner, H. A. Haus, J. H. Marburger, Phys. Rev. 172, 256 (1968).
[CrossRef]

Wang, C. C.

C. C. Wang, Phys. Rev. Lett. 16, 344 (1966).
[CrossRef]

Whinnery, J. R.

F. W. Dabby, J. R. Whinnery, Appl. Phys. Lett. 13, 284 (1968).
[CrossRef]

Appl. Phys. Lett. (1)

F. W. Dabby, J. R. Whinnery, Appl. Phys. Lett. 13, 284 (1968).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

W. G. Wagner, H. A. Haus, J. H. Marburger, Phys. Rev. 172, 256 (1968).
[CrossRef]

Phys. Rev. Lett. (4)

C. C. Wang, Phys. Rev. Lett. 16, 344 (1966).
[CrossRef]

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

A. C. Tam, W. Happer, Phys. Rev. Lett. 38, 278 (1977).
[CrossRef]

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Science (1)

A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

Zh. Eksp. Teor. Fiz. (1)

G. A. Askar’yan, Zh. Eksp. Teor. Fiz. 42, 1567 (1962) [Sov. Phys. JETP 15, 1088 (1962)].

Other (3)

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, part E2.

Dow Chemical Company uniform polystyrene latex particles. The refractive index of the spheres is ~1.59, and that of the surrounding liquid is ~ 1.33.

P. W. Smith, P. J. Maloney, A. Askin, Opt. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch of basic self-focusing and self-trapping experiment. The nonlinear medium filling the cell is a liquid suspension of submicrometer particles.

Fig. 2
Fig. 2

Beam-trajectory photographs of TEM00- and TEM01-modes in the nonlinear medium as seen in side scattering. A and C show normal diffractive spread at low power. B and D are taken above the critical power and show formation of self-trapped filaments.

Fig. 3
Fig. 3

Beam shapes at the output face of the nonlinear medium for TEM00, TEM01, and TEM01* modes. A, C, and E are taken at low power, where diffraction controls the spot size. B, D, and F are taken above the critical power and show the small, highly intense self-trapped filaments.

Tables (1)

Tables Icon

Table 1 Critical Power in Watts versus Particle Diameter and Beam Diameter for α0 = 5 cm−1

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P crit = 5 . 763 4 π 2 λ 2 n 0 n 2 ,

Metrics