Abstract

It is shown that efficient Faraday rotation can be obtained in a fiber coil if the circumference of the coil is exactly equal to the beat length of the birefringence caused by bending. The essential elements of a practical, compact isolator based on this principle are demonstrated. Forty-five degrees of Faraday rotation were obtained in a 40-turn, 15-mm-diameter coil placed in the field of a permanent magnet (~0.29 T). The design of optical filters and magnetic sensors is also discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [Crossref] [PubMed]
  2. A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
    [Crossref]
  3. A. M. Smith, “Polarization and magneto optic properties of single-mode fiber,” Appl. Opt. 17, 52–56 (1978).
    [Crossref] [PubMed]
  4. R. H. Stolen, E. H. Turner, “Faraday rotation in highly birefringent optical fibers,” Appl. Opt. 19, 842–845 (1980).
    [Crossref] [PubMed]
  5. E. H. Turner, R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6, 322–323 (1981).
    [Crossref] [PubMed]
  6. W. J. Tabor, A. W. Anderson, L. G. Van Uitert, “Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth ortho ferrites,” J. Appl. Phys. 41, 3018–3021 (1970).
    [Crossref]
  7. S. C. Rashleigh, R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 8, 354–356 (1980).
    [Crossref]
  8. R. A. Bergh, H. C. Le Fevre, H. J. Shaw, “Geometrical fiber configuration for isolators and magnetometers,” presented at the International Conference on Fiber Optic Rotation Sensors, November 9–11, 1981, Cambridge, Massachusetts.

1981 (2)

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
[Crossref]

E. H. Turner, R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6, 322–323 (1981).
[Crossref] [PubMed]

1980 (3)

1978 (1)

1970 (1)

W. J. Tabor, A. W. Anderson, L. G. Van Uitert, “Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth ortho ferrites,” J. Appl. Phys. 41, 3018–3021 (1970).
[Crossref]

Anderson, A. W.

W. J. Tabor, A. W. Anderson, L. G. Van Uitert, “Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth ortho ferrites,” J. Appl. Phys. 41, 3018–3021 (1970).
[Crossref]

Barlow, A. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
[Crossref]

Bergh, R. A.

R. A. Bergh, H. C. Le Fevre, H. J. Shaw, “Geometrical fiber configuration for isolators and magnetometers,” presented at the International Conference on Fiber Optic Rotation Sensors, November 9–11, 1981, Cambridge, Massachusetts.

Eickhoff, W.

Hadley, M. R.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
[Crossref]

Le Fevre, H. C.

R. A. Bergh, H. C. Le Fevre, H. J. Shaw, “Geometrical fiber configuration for isolators and magnetometers,” presented at the International Conference on Fiber Optic Rotation Sensors, November 9–11, 1981, Cambridge, Massachusetts.

Mansfield, R. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
[Crossref]

Payne, D. N.

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
[Crossref]

Rashleigh, S. C.

S. C. Rashleigh, R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 8, 354–356 (1980).
[Crossref]

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
[Crossref] [PubMed]

Shaw, H. J.

R. A. Bergh, H. C. Le Fevre, H. J. Shaw, “Geometrical fiber configuration for isolators and magnetometers,” presented at the International Conference on Fiber Optic Rotation Sensors, November 9–11, 1981, Cambridge, Massachusetts.

Smith, A. M.

Stolen, R. H.

Tabor, W. J.

W. J. Tabor, A. W. Anderson, L. G. Van Uitert, “Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth ortho ferrites,” J. Appl. Phys. 41, 3018–3021 (1970).
[Crossref]

Turner, E. H.

Ulrich, R.

R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
[Crossref] [PubMed]

S. C. Rashleigh, R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 8, 354–356 (1980).
[Crossref]

Van Uitert, L. G.

W. J. Tabor, A. W. Anderson, L. G. Van Uitert, “Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth ortho ferrites,” J. Appl. Phys. 41, 3018–3021 (1970).
[Crossref]

Appl. Opt. (2)

Electron. Lett. (1)

A. J. Barlow, D. N. Payne, M. R. Hadley, R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17, 725–726 (1981).
[Crossref]

J. Appl. Phys. (1)

W. J. Tabor, A. W. Anderson, L. G. Van Uitert, “Visible and infrared Faraday rotation and birefringence of single-crystal rare-earth ortho ferrites,” J. Appl. Phys. 41, 3018–3021 (1970).
[Crossref]

Opt. Lett. (3)

Other (1)

R. A. Bergh, H. C. Le Fevre, H. J. Shaw, “Geometrical fiber configuration for isolators and magnetometers,” presented at the International Conference on Fiber Optic Rotation Sensors, November 9–11, 1981, Cambridge, Massachusetts.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

For a fiber coil of radius R with a uniform magnetic field B parallel to the input and output leads, the component of the field parallel to the fiber axis is given by B cos(z/R), where z is measured along the fiber axis.

Fig. 2
Fig. 2

Power in each of the orthogonally polarized modes as a function of the number of turns N for the case in which Ex(0) = 1 and Ey(0) = 0. See text for other parameters.

Fig. 3
Fig. 3

Power, |Ey(z = 40 turns)|2, converted to the orthogonal mode for a 40-turn coil [|Ex(0)|2 = 1, |Ey(0)|2 = 0] as a function of the total mismatch δN2π. Individual points were obtained by applying tension to the coil to vary the fiber birefringence. Lower abscissa shows the spectral response that would be obtained if the coil were used as an optical filter.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ E x ( z ) E y ( z ) ] = [ cos Φ z 2 j Δ β Φ cos Φ z 2 2 F Φ sin Φ z 2 2 F Φ sin Φ z 2 cos Φ z 2 + j Δ β Φ cos Φ z 2 ] [ E x ( 0 ) E y ( 0 ) ] ,
( Φ 2 ) 2 = ( Δ β 2 ) 2 + ( F ) 2 .
F = V B cos z R ,
Δ β = 1 / R .
Δ β = K r 2 R 2 ,
T | E y ( z ) | 2 | E x ( 0 ) | 2 sin 2 ( V B z 2 ) .
Δ β = ( 1 + δ ) / R ,

Metrics