Abstract

A numerical parametric study is used to gain insight into how the shapes of dispersion and bandwidth spectra are influenced by dimensions and index differences of light-guide structures with two claddings. Computer-simulated fibers are demonstrated to have bandwidths greater than 25 GHz-km across the entire 1.3–1.55-μm wavelength region.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
    [CrossRef]
  2. T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
    [CrossRef]
  3. L. G. Cohen, W. L. Mammel, H. M. Presby, “Correlation between numerical predictions and measurements of single-mode fiber dispersion characteristics,” Appl. Opt. 19, 1061–1072 (1980).
    [CrossRef]
  4. J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978); J. W. Fleming, D. L. Wood, Bell Laboratories, Murray Hill, New Jersey, “Refractive-index dispersion and related properties in fluorine doped silica” (personal communication).
    [CrossRef]
  5. L. G. Cohen, W. L. Mammel, S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. QE-18, 49–53 (1982).
    [CrossRef]
  6. S. Kawakami, S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. QE-10, 879–887 (1974).
    [CrossRef]
  7. L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

1982 (1)

L. G. Cohen, W. L. Mammel, S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. QE-18, 49–53 (1982).
[CrossRef]

1981 (2)

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
[CrossRef]

L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

1980 (1)

1979 (1)

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
[CrossRef]

1978 (1)

J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978); J. W. Fleming, D. L. Wood, Bell Laboratories, Murray Hill, New Jersey, “Refractive-index dispersion and related properties in fluorine doped silica” (personal communication).
[CrossRef]

1974 (1)

S. Kawakami, S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. QE-10, 879–887 (1974).
[CrossRef]

Cohen, L. G.

L. G. Cohen, W. L. Mammel, S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. QE-18, 49–53 (1982).
[CrossRef]

L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

L. G. Cohen, W. L. Mammel, H. M. Presby, “Correlation between numerical predictions and measurements of single-mode fiber dispersion characteristics,” Appl. Opt. 19, 1061–1072 (1980).
[CrossRef]

Edahiro, T.

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
[CrossRef]

Fleming, J. W.

J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978); J. W. Fleming, D. L. Wood, Bell Laboratories, Murray Hill, New Jersey, “Refractive-index dispersion and related properties in fluorine doped silica” (personal communication).
[CrossRef]

Kawakami, S.

S. Kawakami, S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. QE-10, 879–887 (1974).
[CrossRef]

Kawana, A.

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
[CrossRef]

Lumish, S.

L. G. Cohen, W. L. Mammel, S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. QE-18, 49–53 (1982).
[CrossRef]

Mammel, W. L.

L. G. Cohen, W. L. Mammel, S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. QE-18, 49–53 (1982).
[CrossRef]

L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

L. G. Cohen, W. L. Mammel, H. M. Presby, “Correlation between numerical predictions and measurements of single-mode fiber dispersion characteristics,” Appl. Opt. 19, 1061–1072 (1980).
[CrossRef]

Miya, T.

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
[CrossRef]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
[CrossRef]

Nishida, S.

S. Kawakami, S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. QE-10, 879–887 (1974).
[CrossRef]

Ohmori, Y.

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
[CrossRef]

Okamoto, K.

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
[CrossRef]

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
[CrossRef]

Pearson, A. D.

L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

Presby, H. M.

Sasaki, Y.

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
[CrossRef]

Stone, J.

L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

L. G. Cohen, W. L. Mammel, J. Stone, A. D. Pearson, “Transmission studies of a long single-mode fiber—measurements and considerations for bandwidth optimization,” Bell Syst. Tech. J. 60, 1713–1725 (1981).

Electron. Lett. (2)

K. Okamoto, T. Edahiro, A. Kawana, T. Miya, “Dispersion minimization in single-mode fibres over a wide spectral range,” Electron. Lett. 15, 729–731 (1979).
[CrossRef]

J. W. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978); J. W. Fleming, D. L. Wood, Bell Laboratories, Murray Hill, New Jersey, “Refractive-index dispersion and related properties in fluorine doped silica” (personal communication).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. G. Cohen, W. L. Mammel, S. Lumish, “Dispersion and bandwidth spectra in single-mode fibers,” IEEE J. Quantum Electron. QE-18, 49–53 (1982).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Kawakami, S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. QE-10, 879–887 (1974).
[CrossRef]

T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, “Fabrication of low dispersion single-mode fibers over a wide spectral range,” IEEE J. Quantum Electron. QE-17, 858–861 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ideal refractive-index profile for a double-clad fiber.

Fig. 2
Fig. 2

Qualitative group-index (or group-delay) spectra for single- and double-clad fibers. Solid curves illustrate group-index spectra for the core and cladding materials.

Fig. 3
Fig. 3

(a) Dispersion spectra calculated for double-clad fibers with 2a = 13 μm and Δ = 0.21%, 0.22%, 0.23%. Open circles illustrate material dispersion. Dashed and solid curves illustrate waveguide-dispersion and total-dispersion characteristics, respectively, of double-clad fibers. The dotted2010033dashed curve applies to single-clad fibers. (b) The total power confined within the core and first cladding of double-clad fibers (solid curves) or within the core of single-clad fibers (dotted–dashed curve) plotted versus wavelength.

Fig. 4
Fig. 4

Bandwidth spectra, corresponding to curves in Fig. 3(a), calculated for sources with δλ = 4-nm linewidths. The horizontal dashed line is the 25-GHz-km boundary.

Fig. 5
Fig. 5

Parametric curves for double-clad fibers. Points lying between the upper and lower curves indicate the range of a and Δ parameters for bandwidth spectra that remain higher than 25 GHz-km within the entire 1.3–1.55-μm wavelength region. The cross-hatched marks indicate ±02-μm tolerances on 2a and ±0.01% tolerances on Δ. Solid curves apply for fibers with germania-silicate cores; dashed curves apply for curves with pure-silica cores and fluorine-doped claddings.

Fig. 6
Fig. 6

Illustrates how changes in the light-guide parameter H influence the shapes of waveguide-dispersion spectra (dashed curves). Minimum chromatic dispersion (solid spectral curves) occurs near A = 1.4, 1.9 μm for case 1 with H = 1; near λ = 1.3, 1.55 μm for case 2 with H = 2; and near λ = 1.2, 1.4 μm for case 3 with H > 2.

Metrics