Abstract

It is shown that environmental magnetic fields may cause a considerable error for the detected rotation rate even though the line integral of the magnetic field along the fiber vanishes. Experimentally, it has been shown that the earth’s magnetic field yields a bias uncertainty of about 10°/h, which can be reduced by at least 1 order of magnitude if the fiber coil is protected against environmental magnetic fields.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali, R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  2. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett. 6, 198 (1981).
    [CrossRef] [PubMed]
  3. K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
    [CrossRef]
  4. K. Böhm, P. Marten, K. Petermann, E. Weidel, “Fibre optic rotation sensor with low drift,” presented at Gyro Symposium, Stuttgart, Germany, September 23–24, 1981.
  5. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long term stability,” Opt. Lett. 6, 502 (1981).
    [CrossRef] [PubMed]
  6. J. L. Davies, S. Ezekiel, “Closed-loop, low-noise fiber-optic rotation sensor,” Opt. Lett. 6, 505 (1981).
    [CrossRef]
  7. E. J. Post, “Sagnac-effect,” Rev. Mod. Phys. 39, 475 (1967).
    [CrossRef]
  8. A. M. Smith, “Polarization and magnetooptic properties of single-mode optical fiber,” Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  9. H. J. Arditty, Y. Bourbin, M. Papuchon, C. Puech, “Current sensor using state-of-the-art fiber-optic interferometric techniques,” in Digest of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WL3.
  10. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173 (1980).
    [CrossRef] [PubMed]
  11. A. M. Smith, “Faraday-effect in single mode optical fibre using an injection laser light source,” Electron. Lett. 16, 205 (1980).
    [CrossRef]
  12. G. Schiffner, B. Nottbeck, G. Schöner, “Fiber-optic rotation sensor: analysis of effects limiting sensitivity and accuracy,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.
  13. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single-mode fiber-optic gyroscope,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.
  14. K. Böhm, K. Petermann, E. Weidel, “Fiber gyro performance in the presence of external magnetic fields,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

1981 (4)

1980 (2)

R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173 (1980).
[CrossRef] [PubMed]

A. M. Smith, “Faraday-effect in single mode optical fibre using an injection laser light source,” Electron. Lett. 16, 205 (1980).
[CrossRef]

1978 (1)

1976 (1)

1967 (1)

E. J. Post, “Sagnac-effect,” Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Arditty, H. J.

H. J. Arditty, Y. Bourbin, M. Papuchon, C. Puech, “Current sensor using state-of-the-art fiber-optic interferometric techniques,” in Digest of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WL3.

Bergh, R. A.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long term stability,” Opt. Lett. 6, 502 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett. 6, 198 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single-mode fiber-optic gyroscope,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, “Fibre optic rotation sensor with low drift,” presented at Gyro Symposium, Stuttgart, Germany, September 23–24, 1981.

K. Böhm, K. Petermann, E. Weidel, “Fiber gyro performance in the presence of external magnetic fields,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Bourbin, Y.

H. J. Arditty, Y. Bourbin, M. Papuchon, C. Puech, “Current sensor using state-of-the-art fiber-optic interferometric techniques,” in Digest of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WL3.

Davies, J. L.

Ezekiel, S.

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett. 6, 198 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long term stability,” Opt. Lett. 6, 502 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single-mode fiber-optic gyroscope,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, “Fibre optic rotation sensor with low drift,” presented at Gyro Symposium, Stuttgart, Germany, September 23–24, 1981.

Nottbeck, B.

G. Schiffner, B. Nottbeck, G. Schöner, “Fiber-optic rotation sensor: analysis of effects limiting sensitivity and accuracy,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Papuchon, M.

H. J. Arditty, Y. Bourbin, M. Papuchon, C. Puech, “Current sensor using state-of-the-art fiber-optic interferometric techniques,” in Digest of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WL3.

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, “Fibre optic rotation sensor with low drift,” presented at Gyro Symposium, Stuttgart, Germany, September 23–24, 1981.

K. Böhm, K. Petermann, E. Weidel, “Fiber gyro performance in the presence of external magnetic fields,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Post, E. J.

E. J. Post, “Sagnac-effect,” Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Puech, C.

H. J. Arditty, Y. Bourbin, M. Papuchon, C. Puech, “Current sensor using state-of-the-art fiber-optic interferometric techniques,” in Digest of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WL3.

Schiffner, G.

G. Schiffner, B. Nottbeck, G. Schöner, “Fiber-optic rotation sensor: analysis of effects limiting sensitivity and accuracy,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Schöner, G.

G. Schiffner, B. Nottbeck, G. Schöner, “Fiber-optic rotation sensor: analysis of effects limiting sensitivity and accuracy,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Shaw, H. J.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope with long term stability,” Opt. Lett. 6, 502 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett. 6, 198 (1981).
[CrossRef] [PubMed]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single-mode fiber-optic gyroscope,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Shorthill, R. W.

Smith, A. M.

A. M. Smith, “Faraday-effect in single mode optical fibre using an injection laser light source,” Electron. Lett. 16, 205 (1980).
[CrossRef]

A. M. Smith, “Polarization and magnetooptic properties of single-mode optical fiber,” Appl. Opt. 17, 52 (1978).
[CrossRef] [PubMed]

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173 (1980).
[CrossRef] [PubMed]

Vali, V.

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, “Fibre optic rotation sensor with low drift,” presented at Gyro Symposium, Stuttgart, Germany, September 23–24, 1981.

K. Böhm, K. Petermann, E. Weidel, “Fiber gyro performance in the presence of external magnetic fields,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Appl. Opt. (2)

Electron. Lett. (2)

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17, 352 (1981).
[CrossRef]

A. M. Smith, “Faraday-effect in single mode optical fibre using an injection laser light source,” Electron. Lett. 16, 205 (1980).
[CrossRef]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

E. J. Post, “Sagnac-effect,” Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Other (5)

H. J. Arditty, Y. Bourbin, M. Papuchon, C. Puech, “Current sensor using state-of-the-art fiber-optic interferometric techniques,” in Digest of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WL3.

K. Böhm, P. Marten, K. Petermann, E. Weidel, “Fibre optic rotation sensor with low drift,” presented at Gyro Symposium, Stuttgart, Germany, September 23–24, 1981.

G. Schiffner, B. Nottbeck, G. Schöner, “Fiber-optic rotation sensor: analysis of effects limiting sensitivity and accuracy,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All single-mode fiber-optic gyroscope,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

K. Böhm, K. Petermann, E. Weidel, “Fiber gyro performance in the presence of external magnetic fields,” presented at International Conference on Fiber-Optic Rotation Sensors and Related Technologies, Cambridge, Massachusetts, November 1981.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Model for a fiber-optic gyro.

Fig. 2
Fig. 2

Long-term behavior of fiber gyro without protection against external magnetic fields.

Fig. 3
Fig. 3

Fiber gyro output if a strong permanent magnet is placed close to the fiber coil.

Fig. 4
Fig. 4

Long-term behavior of fiber gyro with the fiber coil being protected against the earth’s magnetic field.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E 2 = ( M ) ccw exp ( j φ s ) E 1 ,
( M ) ccw = ( C 2 R 2 C 1 R 1 ) ccw exp ( a ) exp ( j φ ¯ ) ,
( C 1 ) ccw = ( cos κ sin κ sin κ cos κ ) ,
( C 2 ) ccw = ( cos κ sin κ sin κ cos κ ) .
R 1 = ( cos ( α / 2 ) j sin ( α / 2 ) j sin ( α / 2 ) cos ( α / 2 ) ) ,
R 2 = ( cos ( α / 2 ) j sin ( α / 2 ) j sin ( α / 2 ) cos ( α / 2 ) ) ,
E 1 = ( M ) cw exp ( j φ s ) E 2 ,
( M ) ccw = ( m 11 m 12 m 21 m 22 ) exp ( a ) exp ( j φ ¯ ) ,
P D = A | m 11 ( κ ) exp ( j φ s ) + m 11 ( κ ) exp ( j φ s ) | 2 .
P D = A ( 2 cos φ s + 2 κ sin α sin φ s ) 2 2 A [ 1 + cos ( 2 φ s ) ] ,
2 φ s = 2 φ s Δ φ s

Metrics