Abstract

An explanation of the working mechanism of single-mode optical-waveguide Y junction is presented. Taking into account the contribution of radiation mode, the power conservation at the junction is clearly verified. Also, the analogy between the behavior of the single-mode Y junction and that of a beam splitter is discussed.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett. 12, 647–649 (1973).
    [Crossref]
  2. W. K. Burns, A. F. Milton, “Mode conversion in planar–dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
    [Crossref]
  3. T. R. Ranganath, S. Wang, “Ti-diffused LiNbO3 branching waveguide modulators: performance and design,” IEEE J. Quantum Electron. QE-13, 290–295 (1977).
    [Crossref]
  4. I. Anderson, “Transmission performance of Y junction in planar dielectric waveguide,” Microwaves, Opt. Acoust. 2, 7–12 (1978).
    [Crossref]
  5. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
    [Crossref]
  6. H. Sasaki, I. Anderson, “Theoretical and experimental studies on active Y junction in optical waveguides,” IEEE J. Quantum Electron. QE-14, 883–892 (1978).
    [Crossref]
  7. W. K. Burns, A. F. Milton, “An active analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
    [Crossref]
  8. H. Sasaki, N. Mikoshiba, “Normalized power transmission in single mode optical branching waveguides,” Electron. Lett. 17, 136–138 (1981).
    [Crossref]
  9. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  10. Y. Murakami, M. Ikeda, “Single-mode optical Y-branching circuit using deposited silica guides (DS guides),” Electron. Lett. 17, 411–413 (1981).
    [Crossref]

1981 (2)

H. Sasaki, N. Mikoshiba, “Normalized power transmission in single mode optical branching waveguides,” Electron. Lett. 17, 136–138 (1981).
[Crossref]

Y. Murakami, M. Ikeda, “Single-mode optical Y-branching circuit using deposited silica guides (DS guides),” Electron. Lett. 17, 411–413 (1981).
[Crossref]

1980 (1)

W. K. Burns, A. F. Milton, “An active analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[Crossref]

1978 (3)

I. Anderson, “Transmission performance of Y junction in planar dielectric waveguide,” Microwaves, Opt. Acoust. 2, 7–12 (1978).
[Crossref]

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
[Crossref]

H. Sasaki, I. Anderson, “Theoretical and experimental studies on active Y junction in optical waveguides,” IEEE J. Quantum Electron. QE-14, 883–892 (1978).
[Crossref]

1977 (1)

T. R. Ranganath, S. Wang, “Ti-diffused LiNbO3 branching waveguide modulators: performance and design,” IEEE J. Quantum Electron. QE-13, 290–295 (1977).
[Crossref]

1975 (1)

W. K. Burns, A. F. Milton, “Mode conversion in planar–dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[Crossref]

1973 (1)

H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett. 12, 647–649 (1973).
[Crossref]

Anderson, I.

I. Anderson, “Transmission performance of Y junction in planar dielectric waveguide,” Microwaves, Opt. Acoust. 2, 7–12 (1978).
[Crossref]

H. Sasaki, I. Anderson, “Theoretical and experimental studies on active Y junction in optical waveguides,” IEEE J. Quantum Electron. QE-14, 883–892 (1978).
[Crossref]

Burns, W. K.

W. K. Burns, A. F. Milton, “An active analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[Crossref]

W. K. Burns, A. F. Milton, “Mode conversion in planar–dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[Crossref]

Ikeda, M.

Y. Murakami, M. Ikeda, “Single-mode optical Y-branching circuit using deposited silica guides (DS guides),” Electron. Lett. 17, 411–413 (1981).
[Crossref]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Mikoshiba, N.

H. Sasaki, N. Mikoshiba, “Normalized power transmission in single mode optical branching waveguides,” Electron. Lett. 17, 136–138 (1981).
[Crossref]

Milton, A. F.

W. K. Burns, A. F. Milton, “An active analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[Crossref]

W. K. Burns, A. F. Milton, “Mode conversion in planar–dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[Crossref]

Murakami, Y.

Y. Murakami, M. Ikeda, “Single-mode optical Y-branching circuit using deposited silica guides (DS guides),” Electron. Lett. 17, 411–413 (1981).
[Crossref]

Ranganath, T. R.

T. R. Ranganath, S. Wang, “Ti-diffused LiNbO3 branching waveguide modulators: performance and design,” IEEE J. Quantum Electron. QE-13, 290–295 (1977).
[Crossref]

Sasaki, H.

H. Sasaki, N. Mikoshiba, “Normalized power transmission in single mode optical branching waveguides,” Electron. Lett. 17, 136–138 (1981).
[Crossref]

H. Sasaki, I. Anderson, “Theoretical and experimental studies on active Y junction in optical waveguides,” IEEE J. Quantum Electron. QE-14, 883–892 (1978).
[Crossref]

Wang, S.

T. R. Ranganath, S. Wang, “Ti-diffused LiNbO3 branching waveguide modulators: performance and design,” IEEE J. Quantum Electron. QE-13, 290–295 (1977).
[Crossref]

Yajima, H.

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
[Crossref]

H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett. 12, 647–649 (1973).
[Crossref]

Appl. Phys. Lett. (1)

H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett. 12, 647–649 (1973).
[Crossref]

Electron. Lett. (2)

H. Sasaki, N. Mikoshiba, “Normalized power transmission in single mode optical branching waveguides,” Electron. Lett. 17, 136–138 (1981).
[Crossref]

Y. Murakami, M. Ikeda, “Single-mode optical Y-branching circuit using deposited silica guides (DS guides),” Electron. Lett. 17, 411–413 (1981).
[Crossref]

IEEE J. Quantum Electron. (5)

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. QE-14, 749–755 (1978).
[Crossref]

H. Sasaki, I. Anderson, “Theoretical and experimental studies on active Y junction in optical waveguides,” IEEE J. Quantum Electron. QE-14, 883–892 (1978).
[Crossref]

W. K. Burns, A. F. Milton, “An active analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[Crossref]

W. K. Burns, A. F. Milton, “Mode conversion in planar–dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[Crossref]

T. R. Ranganath, S. Wang, “Ti-diffused LiNbO3 branching waveguide modulators: performance and design,” IEEE J. Quantum Electron. QE-13, 290–295 (1977).
[Crossref]

Microwaves, Opt. Acoust. (1)

I. Anderson, “Transmission performance of Y junction in planar dielectric waveguide,” Microwaves, Opt. Acoust. 2, 7–12 (1978).
[Crossref]

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single-mode optical-waveguide Y junction.

Fig. 2
Fig. 2

Change in the field distribution and the effective refractive indices for the symmetric single-mode Y junction. Solid and dotted lines correspond to even and odd local normal modes, respectively.

Fig. 3
Fig. 3

Basic operation of the single-mode Y junction and analogy to the beam splitter (or semireflecting mirror).

Fig. 4
Fig. 4

Change in the field distribution and the effective refractive indices of the even and odd local normal modes for the nonsymmetric single-mode Y junction.

Metrics