Abstract

It is shown that light sources of low coherence will exhibit intensity fluctuations similar to those of thermal light, at least after traveling through a fiber with material dispersion. These fluctuation yield a vanishing intensity-dependent nonreciprocal phase shift for fiber gyroscopes.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Kaplan, P. Meytre, “Enhancement of the Sagnac effect due to nonlinearly induced nonreciprocity,” Opt. Lett. 6, 590 (1981).
    [CrossRef] [PubMed]
  2. S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotations Sensors and Related Technologies (Springer-Verlag, Heidelberg, 1982).
  3. R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Compensation of the optical Kerr effect in fiber-optic gyroscopes,” Opt. Lett. 7, 282 (1982).
    [CrossRef] [PubMed]
  4. C. C. Cutler, S. A. Newton, H. J. Shaw, “Limitation of rotation sensing by scattering,” Opt. Lett. 5, 488 (1980).
    [CrossRef] [PubMed]
  5. K. Böhm, P. Russer, E. Weidel, R. Ulrich, “Low-noise fiber-optic rotation sensing,” Opt. Lett. 6, 64 (1981).
    [CrossRef] [PubMed]
  6. K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
    [CrossRef]
  7. B. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).
  8. T. P. Lee, C. A. Burrus, B. Miller, “A stripe-geometry double-heterostructure amplified spontaneous emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9, 820 (1973).
  9. K. Petermann, E. Weidel, “Semiconductor laser noise in an interferometer system,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
    [CrossRef]
  10. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259 (1982).
    [CrossRef]
  11. R. E. Epworth, “The measurement of static and dynamic coherence phenomena using a Michelson interferometer,” presented at the Optical Communication Conference, Amsterdam, The Netherlands, September 1979.
  12. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

1982 (2)

R. A. Bergh, H. C. Lefevre, H. J. Shaw, “Compensation of the optical Kerr effect in fiber-optic gyroscopes,” Opt. Lett. 7, 282 (1982).
[CrossRef] [PubMed]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

1981 (4)

A. E. Kaplan, P. Meytre, “Enhancement of the Sagnac effect due to nonlinearly induced nonreciprocity,” Opt. Lett. 6, 590 (1981).
[CrossRef] [PubMed]

K. Petermann, E. Weidel, “Semiconductor laser noise in an interferometer system,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

K. Böhm, P. Russer, E. Weidel, R. Ulrich, “Low-noise fiber-optic rotation sensing,” Opt. Lett. 6, 64 (1981).
[CrossRef] [PubMed]

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

1980 (1)

1973 (1)

T. P. Lee, C. A. Burrus, B. Miller, “A stripe-geometry double-heterostructure amplified spontaneous emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9, 820 (1973).

Bergh, R. A.

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

Böhm, K.

K. Böhm, P. Russer, E. Weidel, R. Ulrich, “Low-noise fiber-optic rotation sensing,” Opt. Lett. 6, 64 (1981).
[CrossRef] [PubMed]

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

Burrus, C. A.

T. P. Lee, C. A. Burrus, B. Miller, “A stripe-geometry double-heterostructure amplified spontaneous emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9, 820 (1973).

Cutler, C. C.

Davis, J. L.

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotations Sensors and Related Technologies (Springer-Verlag, Heidelberg, 1982).

Epworth, R. E.

R. E. Epworth, “The measurement of static and dynamic coherence phenomena using a Michelson interferometer,” presented at the Optical Communication Conference, Amsterdam, The Netherlands, September 1979.

Ezekiel, S.

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotations Sensors and Related Technologies (Springer-Verlag, Heidelberg, 1982).

Hellwarth, R.

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotations Sensors and Related Technologies (Springer-Verlag, Heidelberg, 1982).

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

Kaplan, A. E.

Lee, T. P.

T. P. Lee, C. A. Burrus, B. Miller, “A stripe-geometry double-heterostructure amplified spontaneous emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9, 820 (1973).

Lefevre, H. C.

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

Meytre, P.

Miller, B.

T. P. Lee, C. A. Burrus, B. Miller, “A stripe-geometry double-heterostructure amplified spontaneous emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9, 820 (1973).

Newton, S. A.

Petermann, K.

K. Petermann, E. Weidel, “Semiconductor laser noise in an interferometer system,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

Russer, P.

Saleh, B.

B. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).

Shaw, H. J.

Ulrich, R.

K. Böhm, P. Russer, E. Weidel, R. Ulrich, “Low-noise fiber-optic rotation sensing,” Opt. Lett. 6, 64 (1981).
[CrossRef] [PubMed]

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

K. Petermann, E. Weidel, “Semiconductor laser noise in an interferometer system,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

K. Böhm, P. Russer, E. Weidel, R. Ulrich, “Low-noise fiber-optic rotation sensing,” Opt. Lett. 6, 64 (1981).
[CrossRef] [PubMed]

Electr. Lett. (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electr. Lett. 17, 352 (1981).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. P. Lee, C. A. Burrus, B. Miller, “A stripe-geometry double-heterostructure amplified spontaneous emission (superluminescent) diode,” IEEE J. Quantum Electron. QE-9, 820 (1973).

K. Petermann, E. Weidel, “Semiconductor laser noise in an interferometer system,” IEEE J. Quantum Electron. QE-17, 1251 (1981).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

Opt. Lett. (4)

Other (4)

S. Ezekiel, J. L. Davis, R. Hellwarth, “Intensity dependent nonreciprocal phase shift in fiber gyro,” in Proceedings of the International Conference on Fiberoptic Rotations Sensors and Related Technologies (Springer-Verlag, Heidelberg, 1982).

R. E. Epworth, “The measurement of static and dynamic coherence phenomena using a Michelson interferometer,” presented at the Optical Communication Conference, Amsterdam, The Netherlands, September 1979.

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).

B. Saleh, Photoelectron Statistics (Springer-Verlag, Berlin, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Simplified fiber gyroscope.

Fig. 2
Fig. 2

Fiber-gyroscope setup with depolarizer.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Δ n 1 = C ( I 1 + 2 I 2 ) ,
Δ n 2 = C ( I 2 + 2 I 1 ) ,
Δ n 1 = I 1 Δ n 1 ( I 1 , I 2 ) P ( I 1 , I 2 ) d I 1 d I 2 / I 1 P ( I 1 , I 2 ) d I 1 d I 2 ,
Δ n 2 = I 2 Δ n 2 ( I 1 , I 2 ) P ( I 1 , I 2 ) d I 1 d I 2 / I 2 P ( I 1 , I 2 ) d I 1 d I 2 .
Δ n 1 = C ( I 1 2 + 2 I 1 I 2 ) / I 1 ,
Δ n 2 = C ( I 2 2 + 2 I 1 I 2 ) / I 2 ,
I i m = P i ( I i ) I i m d I i .
P ( I ) = ( 1 / I ) exp ( - I / I ) ,
Δ n 1 = Δ n 2 = 2 C ( I 1 + I 2 ) .
P ( I ) = 0.5 [ δ ( I - 2 I ) + δ ( I ) ] ,
L d t d λ Δ λ τ c ,
τ c = 1 Δ ω = λ 2 2 π c Δ λ ,
L λ 2 / [ ( d τ / d λ ) 2 π c ( Δ λ ) 2 ] .
L 4.8 cm
L 200 m .
P NL = 0 χ ( 3 ) E ( E · E ) ,
E = [ E x ( t , z ) + E 1 ( t , z ) E y ( t , z ) ] ,
E x ( t , z ) = ψ x cos ( ω t + φ x - β z ) , E y ( t , z ) = ψ y cos ( ω t + φ y - β z ) , E 1 ( t , z ) = ψ 1 cos ( ω t + φ 1 + β z ) ,
P x NL = 2 0 ( Δ n 1 E 1 + Δ n 2 E x ) ,
Δ n 1 = C ( I 1 + 2 I x + I y ) ,
Δ n 2 = C ( I x + 2 I 1 + I y ) .
P ( I x , I y ) = P x ( I x ) P y ( I y ) ,
Δ n 1 = C ( I 1 2 / I 1 + 2 I x + I y ) ,
Δ n 2 = C ( I x / I λ + 2 I x + I y ) .

Metrics