Abstract

A blazing technique using electron-beam lithography to achieve higher efficiency of gratings and Fresnel lenses is described. Transmission-type blazed gratings have been formed in polymethyl methacrylate films. As a result of measurement, we found that their diffraction efficiency of the first order in these gratings amounts to as much as 60 to 70% at 0.633 μm. Fresnel lenses of 1-mm diameter and 5-mm focal length, which have a sawtooth relief profile, have been also fabricated, and the experimental results showed high-efficiency performance (about 50%) and nearly diffraction-limited focusing.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fujita, H. Nishihara, J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
    [CrossRef] [PubMed]
  2. T. Fujita, H. Nishihara, J. Koyama, “Micro Fresnel lenses fabricated by electron-beam lithography,” Trans. Inst. Elect. Commun. Eng. Jpn. J64-C, 652–657 (1981).
  3. J. J. Clair, “New method to synthesize kinoform,” Opt. Commun. 6, 135–137 (1972).
    [CrossRef]
  4. W. J. Dallas, “Kinoform fabrication—a new method,” Opt. Commun. 8, 340–344 (1973).
    [CrossRef]
  5. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [CrossRef]
  6. J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
    [PubMed]
  7. R. Magnusson, T. K. Gaylord, “Diffraction efficiency of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68, 806–809 (1978).
    [CrossRef]

1981

T. Fujita, H. Nishihara, J. Koyama, “Micro Fresnel lenses fabricated by electron-beam lithography,” Trans. Inst. Elect. Commun. Eng. Jpn. J64-C, 652–657 (1981).

T. Fujita, H. Nishihara, J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
[CrossRef] [PubMed]

1978

1973

W. J. Dallas, “Kinoform fabrication—a new method,” Opt. Commun. 8, 340–344 (1973).
[CrossRef]

1972

J. J. Clair, “New method to synthesize kinoform,” Opt. Commun. 6, 135–137 (1972).
[CrossRef]

1970

1969

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Clair, J. J.

J. J. Clair, “New method to synthesize kinoform,” Opt. Commun. 6, 135–137 (1972).
[CrossRef]

Dallas, W. J.

W. J. Dallas, “Kinoform fabrication—a new method,” Opt. Commun. 8, 340–344 (1973).
[CrossRef]

Fujita, T.

T. Fujita, H. Nishihara, J. Koyama, “Micro Fresnel lenses fabricated by electron-beam lithography,” Trans. Inst. Elect. Commun. Eng. Jpn. J64-C, 652–657 (1981).

T. Fujita, H. Nishihara, J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
[CrossRef] [PubMed]

Gaylord, T. K.

Hirsch, P. M.

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Jordan, J. A.

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Koyama, J.

T. Fujita, H. Nishihara, J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
[CrossRef] [PubMed]

T. Fujita, H. Nishihara, J. Koyama, “Micro Fresnel lenses fabricated by electron-beam lithography,” Trans. Inst. Elect. Commun. Eng. Jpn. J64-C, 652–657 (1981).

Lesem, L. B.

J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970).
[PubMed]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Magnusson, R.

Nishihara, H.

T. Fujita, H. Nishihara, J. Koyama, “Micro Fresnel lenses fabricated by electron-beam lithography,” Trans. Inst. Elect. Commun. Eng. Jpn. J64-C, 652–657 (1981).

T. Fujita, H. Nishihara, J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
[CrossRef] [PubMed]

Van Rooy, D. L.

Appl. Opt.

IBM J. Res. Dev.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

J. J. Clair, “New method to synthesize kinoform,” Opt. Commun. 6, 135–137 (1972).
[CrossRef]

W. J. Dallas, “Kinoform fabrication—a new method,” Opt. Commun. 8, 340–344 (1973).
[CrossRef]

Opt. Lett.

Trans. Inst. Elect. Commun. Eng. Jpn.

T. Fujita, H. Nishihara, J. Koyama, “Micro Fresnel lenses fabricated by electron-beam lithography,” Trans. Inst. Elect. Commun. Eng. Jpn. J64-C, 652–657 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Four parameters that influence the diffraction efficiency, profiles of the corresponding phase-retardation functions φ(x)’s, and calculated diffraction-efficiency functions with respect to each parameter.

Fig. 2
Fig. 2

Cross-sectional view of a sample and fabrication process of a blazed grating using electron-beam lithography. The dot density corresponds to an electron dose.

Fig. 3
Fig. 3

SEM cross-sectional photograph of the grating that has been made to measure the etch-depth characteristics of PMMA by changing a dose from 0.3 × 10−4 to 1.7 × 10−4 C/cm2 linearly in a period of 10 μm, and relationship between the dose and the etch depth obtained from this photograph.

Fig. 4
Fig. 4

SEM cross-sectional photographs of the blazed gratings: grating period is (a) 5 μm, (b) 10 μm.

Fig. 5
Fig. 5

Micrograph of the fabricated Fresnel lens. Diameter, 1 mm; focal length, 5 mm at 0.633-μm wavelength.

Fig. 6
Fig. 6

Intensity profile on the focal plane of the lens in Fig. 5 at a normal plane-wave incidence (λ = 0.633 μm). (a) Image of the spot, (b) video signal trace of a TV camera.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η m = b m 2 ,
b m = 1 T 0 T exp [ j φ ( x ) ] exp ( - j 2 π m x T ) d x ,
d f = λ / ( n - 1 ) ,
ψ = - π r 2 / λ f ,
Δ ψ = ψ ( mod 2 π ) .
d ( r ) = - ( d f / 2 π ) Δ ψ .

Metrics