Abstract

A rigorous theoretical analysis has been presented of the stress birefringence Bs and the polarization dispersion Ds in single-polarization fibers. Both Bs and Ds vary considerably in dependence on normalized frequency v, and the v-value dependence of Bs and Ds is strongly affected by the anisotropic stress distribution in the fiber. It is shown that the experimental results agree well with the calculated ones.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, “Heterodyne-type optical communications,” presented at 1981 International Conference on Integrated Optics and Optical Fiber Communication, San Francisco, California, April 17–29, 1981.
  2. R. Ulrich, M. Johnson, “Fiber-ring interferometer: polarization analysis,” Opt. Lett. 4, 152–154 (1979).
    [CrossRef] [PubMed]
  3. V. Ramaswamy, I. P. Kaminow, P. Kaiser, “Single polarization optical fibers: exposed cladding technique,” Appl. Phys. Lett. 33, 814–816 (1978).
    [CrossRef]
  4. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
    [CrossRef]
  5. S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7, 294–296 (1982).
    [CrossRef] [PubMed]
  6. N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
    [CrossRef]
  7. K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
    [CrossRef]
  8. P. L. Chu, “Thermal-stress-induced birefringence in single-mode elliptical optical fiber,” Electron. Lett. 18, 45–47 (1982).
    [CrossRef]
  9. N. K. Sinha, “Normalized dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses 19, 66–77 (1978).
  10. E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
    [CrossRef]
  11. Y. Sasaki, K. Okamoto, T. Hosaka, N. Shibata, “Polarization-maintaining and absorption-reducing fibers,” presented at Topical Meeting on Optical-Fiber Communication, Phoenix, Arizona, April 13–15, 1982.

1982 (3)

N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
[CrossRef]

P. L. Chu, “Thermal-stress-induced birefringence in single-mode elliptical optical fiber,” Electron. Lett. 18, 45–47 (1982).
[CrossRef]

S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7, 294–296 (1982).
[CrossRef] [PubMed]

1981 (2)

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

1979 (2)

R. Ulrich, M. Johnson, “Fiber-ring interferometer: polarization analysis,” Opt. Lett. 4, 152–154 (1979).
[CrossRef] [PubMed]

E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
[CrossRef]

1978 (2)

V. Ramaswamy, I. P. Kaminow, P. Kaiser, “Single polarization optical fibers: exposed cladding technique,” Appl. Phys. Lett. 33, 814–816 (1978).
[CrossRef]

N. K. Sinha, “Normalized dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses 19, 66–77 (1978).

Atsuki, K.

E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
[CrossRef]

Chu, P. L.

P. L. Chu, “Thermal-stress-induced birefringence in single-mode elliptical optical fiber,” Electron. Lett. 18, 45–47 (1982).
[CrossRef]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Hashimoto, O.

E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
[CrossRef]

Hosaka, T.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Y. Sasaki, K. Okamoto, T. Hosaka, N. Shibata, “Polarization-maintaining and absorption-reducing fibers,” presented at Topical Meeting on Optical-Fiber Communication, Phoenix, Arizona, April 13–15, 1982.

Johnson, M.

Kaiser, P.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, “Single polarization optical fibers: exposed cladding technique,” Appl. Phys. Lett. 33, 814–816 (1978).
[CrossRef]

Kamijo, K.

E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
[CrossRef]

Kaminow, I. P.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, “Single polarization optical fibers: exposed cladding technique,” Appl. Phys. Lett. 33, 814–816 (1978).
[CrossRef]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Y. Sasaki, K. Okamoto, T. Hosaka, N. Shibata, “Polarization-maintaining and absorption-reducing fibers,” presented at Topical Meeting on Optical-Fiber Communication, Phoenix, Arizona, April 13–15, 1982.

Okoshi, T.

T. Okoshi, “Heterodyne-type optical communications,” presented at 1981 International Conference on Integrated Optics and Optical Fiber Communication, San Francisco, California, April 17–29, 1981.

Ramaswamy, V.

V. Ramaswamy, I. P. Kaminow, P. Kaiser, “Single polarization optical fibers: exposed cladding technique,” Appl. Phys. Lett. 33, 814–816 (1978).
[CrossRef]

Rashleigh, S. C.

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

Y. Sasaki, K. Okamoto, T. Hosaka, N. Shibata, “Polarization-maintaining and absorption-reducing fibers,” presented at Topical Meeting on Optical-Fiber Communication, Phoenix, Arizona, April 13–15, 1982.

Seikai, S.

N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
[CrossRef]

Shibata, N.

N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
[CrossRef]

Y. Sasaki, K. Okamoto, T. Hosaka, N. Shibata, “Polarization-maintaining and absorption-reducing fibers,” presented at Topical Meeting on Optical-Fiber Communication, Phoenix, Arizona, April 13–15, 1982.

Sinha, N. K.

N. K. Sinha, “Normalized dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses 19, 66–77 (1978).

Tateda, M.

N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
[CrossRef]

Uchida, N.

N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
[CrossRef]

Ulrich, R.

Yamashita, E.

E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

V. Ramaswamy, I. P. Kaminow, P. Kaiser, “Single polarization optical fibers: exposed cladding technique,” Appl. Phys. Lett. 33, 814–816 (1978).
[CrossRef]

Electron. Lett. (3)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17, 530–531 (1981).
[CrossRef]

N. Shibata, N. Uchida, M. Tateda, S. Seikai, “Normalized frequency dependence of polarization mode dispersion due to the thermal-stress-induced birefringence in an elliptical core single-mode fiber,” Electron. Lett. 18, 563–564 (1982).
[CrossRef]

P. L. Chu, “Thermal-stress-induced birefringence in single-mode elliptical optical fiber,” Electron. Lett. 18, 45–47 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

E. Yamashita, K. Atsuki, O. Hashimoto, K. Kamijo, “Modal analysis of homogeneous optical fibers with deformed boundaries,” IEEE Trans. Microwave Theory Tech. MTT-27, 352–356 (1979).
[CrossRef]

Opt. Lett. (2)

Phys. Chem. Glasses (1)

N. K. Sinha, “Normalized dispersion of birefringence of quartz and stress optical coefficient of fused silica and plate glass,” Phys. Chem. Glasses 19, 66–77 (1978).

Other (2)

Y. Sasaki, K. Okamoto, T. Hosaka, N. Shibata, “Polarization-maintaining and absorption-reducing fibers,” presented at Topical Meeting on Optical-Fiber Communication, Phoenix, Arizona, April 13–15, 1982.

T. Okoshi, “Heterodyne-type optical communications,” presented at 1981 International Conference on Integrated Optics and Optical Fiber Communication, San Francisco, California, April 17–29, 1981.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chromatic-dispersion characteristics of the stress optical coefficient P.

Fig. 2
Fig. 2

H(v) and M(v) in elliptical-core fibers.

Fig. 3
Fig. 3

H(v) and M(v) in stress-applied single-polarization fibers.

Fig. 4
Fig. 4

Photomicrograph of the PANDA fiber cross section.

Fig. 5
Fig. 5

Measured polarization dispersions of the PANDA fibers.

Fig. 6
Fig. 6

Experimental and theoretical results of [Ds(v) − Ds0]/s0.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

B = ( β 1 k - β 2 k ) = [ β 1 ( 0 ) - β 2 ( 0 ) ] k + ( Γ 1 - Γ 2 ) k ,
Γ ν = ω 0 0 2 π 0 E ν * · X E ν r d r d θ ,
B s ( v ) = P s 0 H ( v ) ,
H ( v ) = 0 2 π 0 s ( r , θ ) p ( r , θ ) r d r d θ s 0 0 2 π 0 p ( r , θ ) r d r d θ ,
D = 1 c d ( Δ β ) d k = 1 c d d k ( k B g ) + 1 c d d k ( k B s ) ,
D s ( v ) = s 0 c [ P M ( v ) - λ d P d λ H ( v ) ] ,
M ( v ) = d d v [ v H ( v ) ] .
B s 0 = P s 0 ,
D s 0 = s 0 c ( P - λ d P d λ ) .
= 1 - a y a x ,
[ D s ( v ) - D s 0 ] s 0 = P c [ ( M - 1 ) - λ P d P d λ ( H - 1 ) ] .
[ D s ( v ) - D s 0 ] s 0 = [ ( τ p - D g ) - D s 0 ] s 0 .

Metrics