Abstract

Atmospheric NO was detected in a long-path absorption experiment using a frequency-doubled dye laser, twice Raman shifted in H2 to 227 nm. Apart from measurements employing a distant retroreflector, the potential of range-resolved lidar measurements was investigated.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Pitts, B. J. Finlayson-Pitts, “Tropospheric photochemical and photophysical processes,” in Tunable Lasers and Applications, Vol. 3 of Springer Series in Optical Sciences, A. Mooradian, T. Jaeger, P. Stokseth, eds. (Springer-Verlag, Berlin, 1976), p. 236; H. S. Johnston, “Photochemistry in the stratosphere,” ibid., p. 259.
  2. K. W. Rothe, U. Brinkmann, H. Walther, “Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption,” Appl. Phys. 3, 115 (1974).
    [CrossRef]
  3. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
    [CrossRef]
  4. K. Fredriksson, B. Galle, K. Nydström, S. Svanberg, “Mobile lidar system for environmental probing,” Appl. Opt. 20, 4181 (1981).
    [CrossRef] [PubMed]
  5. E. D. Hinkley, “Laser spectroscopic instrumentation and techniques: long-path monitoring by resonance absorption,” Opt. Quantum Electron. 8, 155 (1976).
    [CrossRef]
  6. R. T. Menzies, M. S. Shumate, “Remote measurements of ambient air pollutants with a bistatic laser system,” Appl. Opt. 15, 2080 (1976).
    [CrossRef] [PubMed]
  7. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote sensing of NO using a differential absorption lidar,” Appl. Opt. 19, 3282 (1980).
    [CrossRef] [PubMed]
  8. C. K. N. Patel, “Spectroscopic measurements of the stratosphere using tunable infrared lasers,” Opt. Quantum Electron. 8, 145 (1976).
    [CrossRef]
  9. M. Aldén, H. Edner, S. Svanberg, “Remote measurement of atmospheric mercury using differential absorption lidar,” Opt. Lett. 7, 221 (1982).
    [CrossRef] [PubMed]
  10. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Lidar system applied in atmospheric pollution monitoring,” Appl. Opt. 18, 2998 (1979).
    [CrossRef] [PubMed]

1982 (1)

1981 (1)

1980 (1)

1979 (1)

1976 (3)

E. D. Hinkley, “Laser spectroscopic instrumentation and techniques: long-path monitoring by resonance absorption,” Opt. Quantum Electron. 8, 155 (1976).
[CrossRef]

C. K. N. Patel, “Spectroscopic measurements of the stratosphere using tunable infrared lasers,” Opt. Quantum Electron. 8, 145 (1976).
[CrossRef]

R. T. Menzies, M. S. Shumate, “Remote measurements of ambient air pollutants with a bistatic laser system,” Appl. Opt. 15, 2080 (1976).
[CrossRef] [PubMed]

1974 (2)

K. W. Rothe, U. Brinkmann, H. Walther, “Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption,” Appl. Phys. 3, 115 (1974).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Aldén, M.

Brinkmann, U.

K. W. Rothe, U. Brinkmann, H. Walther, “Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption,” Appl. Phys. 3, 115 (1974).
[CrossRef]

DeFeo, W. E.

Edner, H.

Finlayson-Pitts, B. J.

J. N. Pitts, B. J. Finlayson-Pitts, “Tropospheric photochemical and photophysical processes,” in Tunable Lasers and Applications, Vol. 3 of Springer Series in Optical Sciences, A. Mooradian, T. Jaeger, P. Stokseth, eds. (Springer-Verlag, Berlin, 1976), p. 236; H. S. Johnston, “Photochemistry in the stratosphere,” ibid., p. 259.

Fredriksson, K.

Galle, B.

Grant, W. B.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hake, R. D.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hinkley, E. D.

E. D. Hinkley, “Laser spectroscopic instrumentation and techniques: long-path monitoring by resonance absorption,” Opt. Quantum Electron. 8, 155 (1976).
[CrossRef]

Killinger, D. K.

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Menyuk, N.

Menzies, R. T.

Nydström, K.

Nyström, K.

Patel, C. K. N.

C. K. N. Patel, “Spectroscopic measurements of the stratosphere using tunable infrared lasers,” Opt. Quantum Electron. 8, 145 (1976).
[CrossRef]

Pitts, J. N.

J. N. Pitts, B. J. Finlayson-Pitts, “Tropospheric photochemical and photophysical processes,” in Tunable Lasers and Applications, Vol. 3 of Springer Series in Optical Sciences, A. Mooradian, T. Jaeger, P. Stokseth, eds. (Springer-Verlag, Berlin, 1976), p. 236; H. S. Johnston, “Photochemistry in the stratosphere,” ibid., p. 259.

Proctor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Rothe, K. W.

K. W. Rothe, U. Brinkmann, H. Walther, “Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption,” Appl. Phys. 3, 115 (1974).
[CrossRef]

Shumate, M. S.

Svanberg, S.

Walther, H.

K. W. Rothe, U. Brinkmann, H. Walther, “Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption,” Appl. Phys. 3, 115 (1974).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

K. W. Rothe, U. Brinkmann, H. Walther, “Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption,” Appl. Phys. 3, 115 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated remote measurement of NO2 using the differential-absorption backscatter technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (2)

E. D. Hinkley, “Laser spectroscopic instrumentation and techniques: long-path monitoring by resonance absorption,” Opt. Quantum Electron. 8, 155 (1976).
[CrossRef]

C. K. N. Patel, “Spectroscopic measurements of the stratosphere using tunable infrared lasers,” Opt. Quantum Electron. 8, 145 (1976).
[CrossRef]

Other (1)

J. N. Pitts, B. J. Finlayson-Pitts, “Tropospheric photochemical and photophysical processes,” in Tunable Lasers and Applications, Vol. 3 of Springer Series in Optical Sciences, A. Mooradian, T. Jaeger, P. Stokseth, eds. (Springer-Verlag, Berlin, 1976), p. 236; H. S. Johnston, “Photochemistry in the stratosphere,” ibid., p. 259.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Lidar recording obtained as the average of 1800 transients at 226.8 nm. Atmospheric backscattering as well as the echo from a topographic target at 420 nm is shown.

Fig. 2
Fig. 2

Lidar recording at 226.8 nm with prompt signal at 0 m (scattering in telescope), atmospheric backscattering with “grow-in” of laser and detection lobes, an echo from an intermediate folding mirror at 70 m, and the echo from a 12.7-cm-aperture corner-cube reflector. The curve was obtained by adding 1000 individual transients.

Fig. 3
Fig. 3

Recording of the average NO concentration over a pathlength of 2 m × 850 m about 10 m above a street in Lund. Each dot represents the average of several measurement values.

Metrics