Abstract

We report measurement of the photon-counting distributions of nanosecond-duration light pulses. Photon counting is performed on light sources with widely different photon statistics, such as (1) a Q-switched Nd:YAG-laser-pumped dye laser operating well above threshold and producing single-mode nanosecond pulses, (2) the same laser operating close to threshold, and (3) a rotating ground-glass aberrator illuminated by the laser pulses of case (1). The method is particularly suitable for the investigation of the statistics of light generated by the nonlinear interaction of radiation with matter.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For an extensive review of previous work on photon-counting statistics, see R. J. Glauber, ed., Proceedings of the International School of Physics, Course XLII; Quantum Optics (Academic, New York, 1969). See in particular pp. 57–110.
  2. H. P. Yuen, Phys. Rev. A 13, 2226 (1976); H. P. Yuen, J. H. Shapiro, Opt. Lett. 4, 334 (1979); D. Stoler, Phys. Rev. Lett. 33, 1397 (1974); U. Mohr, Opt. Commun. 41, 21 (1982).
    [CrossRef] [PubMed]
  3. H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
    [CrossRef]
  4. Photomultiplier Handbook (RCA, Lancaster, Pa., 1980), pp. 160–176; R. Charvin, Opt. Acta 28, 397 (1981).
    [CrossRef]
  5. Because there is an insignificantly small probability of a background light- or dark-current pulse’s occurring during this gate interval, the actual photon-counting interval equals the nanosecond laser-pulse duration.
  6. Indeed, all the data we report here were obtained with a single set of partitions defining the photon counts associated with the various a/d converter output values.
  7. Ref. 1, pp. 111–146.
  8. S. M. Curry, R. Cubeddu, T. W. Hänsch, Appl. Phys. 1, 153 (1973).
    [CrossRef]
  9. R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), Chap. 3.
  10. J. A. Abate, H. J. Kimble, L. Mandel, Phys. Rev. A 14, 788 (1976); K. Kaminishi, R. Roy, R. Short, L. Mandel, Phys. Rev. A 24, 370 (1981).
    [CrossRef]

1977 (1)

H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
[CrossRef]

1976 (2)

H. P. Yuen, Phys. Rev. A 13, 2226 (1976); H. P. Yuen, J. H. Shapiro, Opt. Lett. 4, 334 (1979); D. Stoler, Phys. Rev. Lett. 33, 1397 (1974); U. Mohr, Opt. Commun. 41, 21 (1982).
[CrossRef] [PubMed]

J. A. Abate, H. J. Kimble, L. Mandel, Phys. Rev. A 14, 788 (1976); K. Kaminishi, R. Roy, R. Short, L. Mandel, Phys. Rev. A 24, 370 (1981).
[CrossRef]

1973 (1)

S. M. Curry, R. Cubeddu, T. W. Hänsch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Abate, J. A.

J. A. Abate, H. J. Kimble, L. Mandel, Phys. Rev. A 14, 788 (1976); K. Kaminishi, R. Roy, R. Short, L. Mandel, Phys. Rev. A 24, 370 (1981).
[CrossRef]

Cubeddu, R.

S. M. Curry, R. Cubeddu, T. W. Hänsch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Curry, S. M.

S. M. Curry, R. Cubeddu, T. W. Hänsch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Dagenais, M.

H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
[CrossRef]

Gagliardi, R. M.

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), Chap. 3.

Hänsch, T. W.

S. M. Curry, R. Cubeddu, T. W. Hänsch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Karp, S.

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), Chap. 3.

Kimble, H. J.

H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
[CrossRef]

J. A. Abate, H. J. Kimble, L. Mandel, Phys. Rev. A 14, 788 (1976); K. Kaminishi, R. Roy, R. Short, L. Mandel, Phys. Rev. A 24, 370 (1981).
[CrossRef]

Mandel, L.

H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
[CrossRef]

J. A. Abate, H. J. Kimble, L. Mandel, Phys. Rev. A 14, 788 (1976); K. Kaminishi, R. Roy, R. Short, L. Mandel, Phys. Rev. A 24, 370 (1981).
[CrossRef]

Yuen, H. P.

H. P. Yuen, Phys. Rev. A 13, 2226 (1976); H. P. Yuen, J. H. Shapiro, Opt. Lett. 4, 334 (1979); D. Stoler, Phys. Rev. Lett. 33, 1397 (1974); U. Mohr, Opt. Commun. 41, 21 (1982).
[CrossRef] [PubMed]

Appl. Phys. (1)

S. M. Curry, R. Cubeddu, T. W. Hänsch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Phys. Rev. A (2)

J. A. Abate, H. J. Kimble, L. Mandel, Phys. Rev. A 14, 788 (1976); K. Kaminishi, R. Roy, R. Short, L. Mandel, Phys. Rev. A 24, 370 (1981).
[CrossRef]

H. P. Yuen, Phys. Rev. A 13, 2226 (1976); H. P. Yuen, J. H. Shapiro, Opt. Lett. 4, 334 (1979); D. Stoler, Phys. Rev. Lett. 33, 1397 (1974); U. Mohr, Opt. Commun. 41, 21 (1982).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977).
[CrossRef]

Other (6)

Photomultiplier Handbook (RCA, Lancaster, Pa., 1980), pp. 160–176; R. Charvin, Opt. Acta 28, 397 (1981).
[CrossRef]

Because there is an insignificantly small probability of a background light- or dark-current pulse’s occurring during this gate interval, the actual photon-counting interval equals the nanosecond laser-pulse duration.

Indeed, all the data we report here were obtained with a single set of partitions defining the photon counts associated with the various a/d converter output values.

Ref. 1, pp. 111–146.

For an extensive review of previous work on photon-counting statistics, see R. J. Glauber, ed., Proceedings of the International School of Physics, Course XLII; Quantum Optics (Academic, New York, 1969). See in particular pp. 57–110.

R. M. Gagliardi, S. Karp, Optical Communications (Wiley, New York, 1976), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Effect on G2 of truncating the photon-counting distribution at 4.

Fig. 2
Fig. 2

Photon-counting distributions for various light sources. Distributions are obtained for (a) the single-mode dye laser running well above threshold, (b) the dye laser operating single-mode but close to threshold. (c) light scattered by the rotating ground glass illuminated by the single-mode dye-laser pulses, (d) a mixed case in which the dye laser running well above threshold was not tagged. On each plot error bars are shown for P ^(4), which is the least-accurate probability estimate, and in the inset for 1 − P ^(0), which is the most accurately displayed probability. These error bars span two standard deviations of sampling error.

Tables (1)

Tables Icon

Table 1 Moments and Associated Errors for the Distribution in Fig. 2

Metrics