Abstract

An intensity discriminator for optical pulses can be made with a birefringent fiber. Such a discriminator would be useful for separating the intense subpicosecond pulses formed by solitonlike compression from the weaker uncompressed background. The discriminator utilizes an intensity-dependent state of polarization out of the fiber.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
    [Crossref]
  2. L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).
  3. P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).
  4. R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
    [Crossref]
  5. J. M. Dziedic, R. H. Stolen, A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403 (1981).
    [Crossref]
  6. R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
    [Crossref]
  7. C. H. Lin, T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
    [Crossref]
  8. J. Botineau, R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).
  9. R. A. Fisher, P. L. Kelley, T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
    [Crossref]
  10. R. Ulrich, A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241 (1979).
    [Crossref] [PubMed]
  11. P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
    [Crossref]

1982 (1)

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

1981 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

1979 (1)

1978 (2)

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

1972 (1)

C. H. Lin, T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

1969 (1)

R. A. Fisher, P. L. Kelley, T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

1965 (1)

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

1964 (1)

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Ashkin, A.

Botineau, J.

J. Botineau, R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).

Dziedic, J. M.

Fisher, R. A.

R. A. Fisher, P. L. Kelley, T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Gustafson, T. K.

C. H. Lin, T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

R. A. Fisher, P. L. Kelley, T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

Kaiser, P.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Kelley, P. L.

R. A. Fisher, P. L. Kelley, T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

Lin, C.

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Lin, C. H.

C. H. Lin, T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

Maker, P. D.

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Pleibel, W.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Ramaswamy, V.

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Simon, A.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

J. M. Dziedic, R. H. Stolen, A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403 (1981).
[Crossref]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

J. Botineau, R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).

Terhune, R. W.

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Ulrich, R.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. H. Stolen, V. Ramaswamy, P. Kaiser, W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

R. A. Fisher, P. L. Kelley, T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

IEEE J. Quantum Electron. (1)

C. H. Lin, T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

Laser Focus (1)

L. F. Mollenauer, R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

Phys. Rev. A (2)

P. D. Maker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

R. H. Stolen, C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Phys. Rev. Lett. (2)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Other (1)

J. Botineau, R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Coupling of polarized light into a birefringent single-mode fiber with principal axes x and y. The λ/2 plate adjusts the input polarization to angle θ from the x axis. The λ/4 plate compensates for the linear birefringence of the fiber so that at low power the beam can be blocked with the polarizer P. At high power, the state of polarization out of the fiber is different so that light is transmitted by the polarizer. The bottom of the figure illustrates a pulse that has been compressed in the fiber leaving low-power background that is removed by the polarizer.

Fig. 2
Fig. 2

Plot of peak transmission through the polarizer as a function of the input polarization angle θ [Eq. (7)] for three different peak powers corresponding to 2πχLP/λ = 10, 20, 30. This is also the peak phase shift from self-phase modulation ϕspm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n x = n x 0 + n x ( P ) , n y = n y 0 + n y ( P ) ;
n x = χ ( P x + 2 3 P y ) , n y = χ ( P y + 2 3 P x ) ;
χ = 4 π n 2 × 10 7 n c A eff .
P t = P 0 sin 2 ( ϕ / 2 ) sin 2 ( 2 θ ) ,
ϕ = 2 π L λ ( n y n x ) = 2 π L χ 3 λ ( P x P y ) ,
θ = tan 1 ( P x / P y ) 1 / 2 .
ϕ = 2 π χ L 3 λ P cos ( 2 θ ) .
δ ω 0 . 86 ϕ s p m Δ ω ,
ϕ s p m = 2 π χ P L λ ,
ϕ = ϕ s p m cos ( 2 θ ) 3 .
P t P 0 = sin 2 [ ϕ s p m cos ( 2 θ ) 6 ] sin 2 ( 2 θ ) ,

Metrics