Abstract

An intensity discriminator for optical pulses can be made with a birefringent fiber. Such a discriminator would be useful for separating the intense subpicosecond pulses formed by solitonlike compression from the weaker uncompressed background. The discriminator utilizes an intensity-dependent state of polarization out of the fiber.

© 1982 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intensity discrimination with twisted birefringent optical fibers

Herbert G. Winful and Andong Hu
Opt. Lett. 11(10) 668-670 (1986)

Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission

Benjamin J. Eggleton, Gadi Lenz, Richart. E. Slusher, and Natalia M. Litchinitser
Appl. Opt. 37(30) 7055-7061 (1998)

Shaping of clean, femtosecond pulses at 1.053 μm for chirped-pulse amplification

Jean-Luc Tapié and Gérard Mourou
Opt. Lett. 17(2) 136-138 (1992)

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
    [Crossref]
  2. L. F. Mollenauer and R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).
  3. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).
  4. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
    [Crossref]
  5. J. M. Dziedic, R. H. Stolen, and A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403 (1981).
    [Crossref]
  6. R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
    [Crossref]
  7. C. H. Lin and T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
    [Crossref]
  8. J. Botineau and R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).
  9. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
    [Crossref]
  10. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241 (1979).
    [Crossref] [PubMed]
  11. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, and N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
    [Crossref]

1982 (1)

L. F. Mollenauer and R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

1981 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

1979 (1)

1978 (2)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

1972 (1)

C. H. Lin and T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

1969 (1)

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

1964 (1)

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, and N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Ashkin, A.

Botineau, J.

J. Botineau and R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).

Dziedic, J. M.

Fisher, R. A.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Gustafson, T. K.

C. H. Lin and T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

Kaiser, P.

R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Kelley, P. L.

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Lin, C. H.

C. H. Lin and T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, and N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Mollenauer, L. F.

L. F. Mollenauer and R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Pleibel, W.

R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Ramaswamy, V.

R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, and N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Simon, A.

Stolen, R. H.

L. F. Mollenauer and R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

J. M. Dziedic, R. H. Stolen, and A. Ashkin, “Optical Kerr effect in long fibers,” Appl. Opt. 20, 1403 (1981).
[Crossref]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

J. Botineau and R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, and N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Ulrich, R.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. H. Stolen, V. Ramaswamy, P. Kaiser, and W. Pleibel, “Linear polarization in birefringent single-mode fibers,” Appl. Phys. Lett. 33, 699 (1978).
[Crossref]

R. A. Fisher, P. L. Kelley, and T. K. Gustafson, “Subpicosecond pulse generation using the optical Kerr effect,” Appl. Phys. Lett. 14, 140 (1969).
[Crossref]

IEEE J. Quantum Electron. (1)

C. H. Lin and T. K. Gustafson, “Optical pulsewidth measurement using self-phase modulation,” IEEE J. Quantum Electron. QE-8, 429 (1972).
[Crossref]

Laser Focus (1)

L. F. Mollenauer and R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 196 (1982).

Phys. Rev. A (2)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801 (1965).

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Phys. Rev. Lett. (2)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095 (1980); A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507 (1964); A. Owyoung, R. W. Hellwarth, and N. George, “Intensity-induced changes in optical polarizations in glasses,” Phys. Rev. B 5, 628 (1972).
[Crossref]

Other (1)

J. Botineau and R. H. Stolen “The effect of polarization on spectral broadening in optical fibers,” J. Opt. Soc. Am. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Coupling of polarized light into a birefringent single-mode fiber with principal axes x and y. The λ/2 plate adjusts the input polarization to angle θ from the x axis. The λ/4 plate compensates for the linear birefringence of the fiber so that at low power the beam can be blocked with the polarizer P. At high power, the state of polarization out of the fiber is different so that light is transmitted by the polarizer. The bottom of the figure illustrates a pulse that has been compressed in the fiber leaving low-power background that is removed by the polarizer.
Fig. 2
Fig. 2 Plot of peak transmission through the polarizer as a function of the input polarization angle θ [Eq. (7)] for three different peak powers corresponding to 2πχLP/λ = 10, 20, 30. This is also the peak phase shift from self-phase modulation ϕspm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n x = n x 0 + n x ( P ) , n y = n y 0 + n y ( P ) ;
n x = χ ( P x + 2 3 P y ) , n y = χ ( P y + 2 3 P x ) ;
χ = 4 π n 2 × 10 7 n c A eff .
P t = P 0 sin 2 ( ϕ / 2 ) sin 2 ( 2 θ ) ,
ϕ = 2 π L λ ( n y n x ) = 2 π L χ 3 λ ( P x P y ) ,
θ = tan 1 ( P x / P y ) 1 / 2 .
ϕ = 2 π χ L 3 λ P cos ( 2 θ ) .
δ ω 0 . 86 ϕ s p m Δ ω ,
ϕ s p m = 2 π χ P L λ ,
ϕ = ϕ s p m cos ( 2 θ ) 3 .
P t P 0 = sin 2 [ ϕ s p m cos ( 2 θ ) 6 ] sin 2 ( 2 θ ) ,

Metrics