Abstract

The collisional enhancing of the magnetic dipole transition I(52P1/2–52P3/2) at 1.3152 μm by Xe is shown to proceed over an exciplex channel: I(52P1/2) + Xe → XeI(2π1/2) → I(52P3/2) + Xe + hν(1.3 μm). The pseudo-first-order rate coefficient for this process is (1.6 ± 0.2) × 10−18 molecule−1 cm3 sec−1. The termolecular rate coefficient for XeI(2π1/2) excimer production is (2 ± 1) × 10−35 molecule−2 cm6 sec−1. The radiative lifetime of the XeI excimer state is of the order of 100 nsec. Similar effects are briefly reported for C2F6, SF6 Kr, Ar, and i-C3F7I.

© 1982 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Ershov, V. Yu. Zalesskii, “Collision-induced I(52P1/2–52P3/2) radiative transition,” Sov. J. Quantum Electron. 8, 649 (1978).
    [CrossRef]
  2. M. Galanti, W. Thieme, K. J. Witte, “Saturation energy density and line profile of the atomic iodine laser transition at high pressure,” IEEE J. Quantum Electron. QE-17, 1817 (1981).
    [CrossRef]
  3. K. Hohla, K. L. Kompa, in Handbook of Chemical Lasers, R. W. F. Gross, J. F. Bott, eds. (Wiley, New York, 1976).
  4. G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from O(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4546 (1975).
    [CrossRef]
  5. G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from S(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4551 (1975).
    [CrossRef]
  6. This process was not known to proceed, at least partially, over a radiative channel. The rate should be equal to or less than the total quenching rate by i-C3F7I: S. L. Dobycliin et al., Kvantovaya Elektron. (Moscow) 5, 2461 (1978).
  7. J. J. Ewing, C. A. Brau, “Emission spectrum of XeI* in electron-beam-excited Xe/I2 mixtures,” Phys. Rev. A 12, 129 (1975).
    [CrossRef]
  8. P. J. Hay, T. H. Dunning, “The covalent and ionic states of the xenon halides,” J. Chem. Phys. 69, 2209 (1978).
    [CrossRef]
  9. D. Rogovin, P. Avizonis, “Collision-induced gain,” Appl. Phys. Lett. 38, 666 (1981).
    [CrossRef]

1981 (2)

M. Galanti, W. Thieme, K. J. Witte, “Saturation energy density and line profile of the atomic iodine laser transition at high pressure,” IEEE J. Quantum Electron. QE-17, 1817 (1981).
[CrossRef]

D. Rogovin, P. Avizonis, “Collision-induced gain,” Appl. Phys. Lett. 38, 666 (1981).
[CrossRef]

1978 (3)

L. S. Ershov, V. Yu. Zalesskii, “Collision-induced I(52P1/2–52P3/2) radiative transition,” Sov. J. Quantum Electron. 8, 649 (1978).
[CrossRef]

P. J. Hay, T. H. Dunning, “The covalent and ionic states of the xenon halides,” J. Chem. Phys. 69, 2209 (1978).
[CrossRef]

This process was not known to proceed, at least partially, over a radiative channel. The rate should be equal to or less than the total quenching rate by i-C3F7I: S. L. Dobycliin et al., Kvantovaya Elektron. (Moscow) 5, 2461 (1978).

1975 (3)

J. J. Ewing, C. A. Brau, “Emission spectrum of XeI* in electron-beam-excited Xe/I2 mixtures,” Phys. Rev. A 12, 129 (1975).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from O(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4546 (1975).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from S(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4551 (1975).
[CrossRef]

Avizonis, P.

D. Rogovin, P. Avizonis, “Collision-induced gain,” Appl. Phys. Lett. 38, 666 (1981).
[CrossRef]

Black, G.

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from O(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4546 (1975).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from S(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4551 (1975).
[CrossRef]

Brau, C. A.

J. J. Ewing, C. A. Brau, “Emission spectrum of XeI* in electron-beam-excited Xe/I2 mixtures,” Phys. Rev. A 12, 129 (1975).
[CrossRef]

Dobycliin, S. L.

This process was not known to proceed, at least partially, over a radiative channel. The rate should be equal to or less than the total quenching rate by i-C3F7I: S. L. Dobycliin et al., Kvantovaya Elektron. (Moscow) 5, 2461 (1978).

Dunning, T. H.

P. J. Hay, T. H. Dunning, “The covalent and ionic states of the xenon halides,” J. Chem. Phys. 69, 2209 (1978).
[CrossRef]

Ershov, L. S.

L. S. Ershov, V. Yu. Zalesskii, “Collision-induced I(52P1/2–52P3/2) radiative transition,” Sov. J. Quantum Electron. 8, 649 (1978).
[CrossRef]

Ewing, J. J.

J. J. Ewing, C. A. Brau, “Emission spectrum of XeI* in electron-beam-excited Xe/I2 mixtures,” Phys. Rev. A 12, 129 (1975).
[CrossRef]

Galanti, M.

M. Galanti, W. Thieme, K. J. Witte, “Saturation energy density and line profile of the atomic iodine laser transition at high pressure,” IEEE J. Quantum Electron. QE-17, 1817 (1981).
[CrossRef]

Hay, P. J.

P. J. Hay, T. H. Dunning, “The covalent and ionic states of the xenon halides,” J. Chem. Phys. 69, 2209 (1978).
[CrossRef]

Hohla, K.

K. Hohla, K. L. Kompa, in Handbook of Chemical Lasers, R. W. F. Gross, J. F. Bott, eds. (Wiley, New York, 1976).

Kompa, K. L.

K. Hohla, K. L. Kompa, in Handbook of Chemical Lasers, R. W. F. Gross, J. F. Bott, eds. (Wiley, New York, 1976).

Rogovin, D.

D. Rogovin, P. Avizonis, “Collision-induced gain,” Appl. Phys. Lett. 38, 666 (1981).
[CrossRef]

Sharpless, R. L.

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from O(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4546 (1975).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from S(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4551 (1975).
[CrossRef]

Slanger, T. G.

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from S(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4551 (1975).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from O(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4546 (1975).
[CrossRef]

Thieme, W.

M. Galanti, W. Thieme, K. J. Witte, “Saturation energy density and line profile of the atomic iodine laser transition at high pressure,” IEEE J. Quantum Electron. QE-17, 1817 (1981).
[CrossRef]

Witte, K. J.

M. Galanti, W. Thieme, K. J. Witte, “Saturation energy density and line profile of the atomic iodine laser transition at high pressure,” IEEE J. Quantum Electron. QE-17, 1817 (1981).
[CrossRef]

Yu. Zalesskii, V.

L. S. Ershov, V. Yu. Zalesskii, “Collision-induced I(52P1/2–52P3/2) radiative transition,” Sov. J. Quantum Electron. 8, 649 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

D. Rogovin, P. Avizonis, “Collision-induced gain,” Appl. Phys. Lett. 38, 666 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Galanti, W. Thieme, K. J. Witte, “Saturation energy density and line profile of the atomic iodine laser transition at high pressure,” IEEE J. Quantum Electron. QE-17, 1817 (1981).
[CrossRef]

J. Chem. Phys. (3)

P. J. Hay, T. H. Dunning, “The covalent and ionic states of the xenon halides,” J. Chem. Phys. 69, 2209 (1978).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from O(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4546 (1975).
[CrossRef]

G. Black, R. L. Sharpless, T. G. Slanger, “Collision-induced emission from S(1S) by He, Ar, N2, H2, Kr, and Xe,” J. Chem. Phys. 63, 4551 (1975).
[CrossRef]

Kvantovaya Elektron. (Moscow) (1)

This process was not known to proceed, at least partially, over a radiative channel. The rate should be equal to or less than the total quenching rate by i-C3F7I: S. L. Dobycliin et al., Kvantovaya Elektron. (Moscow) 5, 2461 (1978).

Phys. Rev. A (1)

J. J. Ewing, C. A. Brau, “Emission spectrum of XeI* in electron-beam-excited Xe/I2 mixtures,” Phys. Rev. A 12, 129 (1975).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. S. Ershov, V. Yu. Zalesskii, “Collision-induced I(52P1/2–52P3/2) radiative transition,” Sov. J. Quantum Electron. 8, 649 (1978).
[CrossRef]

Other (1)

K. Hohla, K. L. Kompa, in Handbook of Chemical Lasers, R. W. F. Gross, J. F. Bott, eds. (Wiley, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Infrared fluorescence signal for 30 mbars of i-C3F7I and 2 bars of Xe. The beginning of the intensified part of the trace corresponds to the sampling time of 9 μsec. At this time the signal voltage was 1.33 mV. Vertical sensitivity, 500 μV/div. Horizontal scale, 2 μsec/div.

Fig. 2
Fig. 2

Graph to determine the rate coefficient A4K3 for XeI* excimer emission and the three-body-rate coefficient k3 for producing XeI* for one typical experimental run.

Fig. 3
Fig. 3

Estimated potential curves for XeI in the region of interest. From Ref. 7.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

i ­ C 3 F 7 I + h ν ( 308 nm ) i - C 3 F 7 + I *,
i - C 3 F 7 I + I * k 2 i - C 3 F 7 I + I + h ν ( 1 . 3 μ m ) ,
I * + M + M K 3 M I * + M ,
M I * A 4 M + I + h ν ( 1 . 3 μ m ) ,
I * A 5 I + h ν ( 1 . 3152 μ m ) ,
( M I * ) = k 3 ( M ) 2 ( I * ) A 4 + k 3 ( M ) .
S 0 A 5 ( I * ) + k 2 ( C 3 F 7 I ) ( I * ) .
S 0 ( 9 μ sec ) X = A 5 + k 2 X ,
k 2 = ( 4 . 1 ± 0 . 8 ) × 10 18 molecule 1 cm 3 sec 1 .
S 0 A 5 ( I * ) .
S A 5 ( I * ) + A 4 ( M I * ) .
S S 0 S 0 = [ A 4 k 3 ( M ) 2 A 4 + k 3 ( M ) ] 1 A 5 .
S 0 S S 0 ( M ) 2 = A 5 k 3 + A 5 A 4 K 3 ( M ) ,
A 4 K 3 = ( 1 . 6 ± 0 . 2 ) × 10 18 molecule 1 cm 3 sec 1 .
Xe + I * k q Xe + I , k q A 4 K 3 .
k 3 = ( 2 ± 1 ) × 10 35 molecule 2 cm 6 sec 1 .
A 4 10 7 sec 1 ,

Metrics