Abstract

A phase-conjugate signal has been obtained in SF6 with a peak reflectivity of 1.2 × 10−3 by using a cw CO2 laser operating on the P(16) line. The degenerate four-wave mixing spectrum exhibits a Doppler-free structure with 2-MHz resolution. When the reflectivity spectrum is compared with the saturated-absorption spectrum, matching peaks in the reflectivity spectrum are found over an 80-MHz bandwidth.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977).
    [CrossRef]
  2. A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
    [CrossRef]
  3. R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
    [CrossRef]
  4. F. A. Hopf, J. Opt. Soc. Am. 70, 1320 (1980).
    [CrossRef]
  5. J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21 (1979).
    [CrossRef] [PubMed]
  6. R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
    [CrossRef]
  7. I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
    [CrossRef]
  8. R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
    [CrossRef]
  9. M. A. Khan, P. W. Kruse, J. F. Ready, Opt. Lett. 5, 261, (1980).
    [CrossRef] [PubMed]
  10. D. E. Watkins, J. F. Figueira, S. J. Thomas, Opt. Lett. 5, 169 (1980).
    [CrossRef] [PubMed]
  11. D. G. Steel, J. F. Lam, Opt. Lett. 5, 297 (1980).
    [CrossRef] [PubMed]
  12. D. E. Watkins, C. R. Phipps, S. J. Thomas, Opt. Lett. 6, 76 (1981).
    [CrossRef] [PubMed]
  13. R. L. Abrams, R. C. Lind, Opt. Lett. 2, 94 (1978); Opt. Lett. 3, 225(E) (1979).
    [CrossRef] [PubMed]
  14. The polarizer and quarter-wave-plate combination shown in Fig. 1 serves two purposes: it acts as an optical isolator for the laser and simultaneously as an attenuator in order to keep the maximum signal below the detector damage threshold.
  15. M. Ouhayoun, C. J. Bordé, Metrologia 13, 149 (1977).
    [CrossRef]
  16. J. L. Boulnois, J. Opt. Soc. Am. 70, 1621A (1980).
  17. The sloping background of the lower trace in Fig. 2 arises from the first derivative of the linear absorption profile.
  18. V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977), Sec. 3.2.
  19. N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).
  20. The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).
  21. G. P. Agrawal, Opt. Commun. (to be published).

1981

1980

1979

J. P. Huignard, J. P. Herriau, P. Aubourg, E. Spitz, Opt. Lett. 4, 21 (1979).
[CrossRef] [PubMed]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
[CrossRef]

1978

1977

R. W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977).
[CrossRef]

M. Ouhayoun, C. J. Bordé, Metrologia 13, 149 (1977).
[CrossRef]

1970

N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).

Abrams, R. L.

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

R. L. Abrams, R. C. Lind, Opt. Lett. 2, 94 (1978); Opt. Lett. 3, 225(E) (1979).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Opt. Commun. (to be published).

Aubourg, P.

Avrillier, S.

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Basov, N. G.

N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).

Bergman, E. E.

I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
[CrossRef]

Bigio, I. J.

I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
[CrossRef]

Bloch, D.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
[CrossRef]

Bordé, C. J.

M. Ouhayoun, C. J. Bordé, Metrologia 13, 149 (1977).
[CrossRef]

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Bordé, J.

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Boulnois, J. L.

J. L. Boulnois, J. Opt. Soc. Am. 70, 1621A (1980).

Camy, G.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
[CrossRef]

Cantrell, C. D.

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Chebotayev, V. P.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977), Sec. 3.2.

Ducloy, M.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
[CrossRef]

Feldman, B. J.

I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
[CrossRef]

Figueira, J. F.

Fisher, R. A.

I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
[CrossRef]

Guiliano, C. R.

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

Hellwarth, R. W.

Herriau, J. P.

Hopf, F. A.

Huignard, J. P.

Jain, R. K.

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

Khan, M. A.

Klein, M. B.

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

Kompanetz, O. N.

N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).

Kruse, P. W.

Lam, J. F.

Letokhov, V. S.

N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977), Sec. 3.2.

Lind, R. C.

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

R. L. Abrams, R. C. Lind, Opt. Lett. 2, 94 (1978); Opt. Lett. 3, 225(E) (1979).
[CrossRef] [PubMed]

Nikitin, V. V.

N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).

Ouhayoun, M.

M. Ouhayoun, C. J. Bordé, Metrologia 13, 149 (1977).
[CrossRef]

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Phipps, C. R.

Raj, R. K.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
[CrossRef]

Ready, J. F.

Salomon, C.

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Snyder, J. J.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
[CrossRef]

Spitz, E.

Steel, D. G.

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

D. G. Steel, J. F. Lam, Opt. Lett. 5, 297 (1980).
[CrossRef] [PubMed]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

Thomas, S. J.

Van Lerberghe, A.

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

Watkins, D. E.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Appl. Phys. Lett.

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

R. C. Lind, D. G. Steel, M. B. Klein, R. L. Abrams, C. R. Guiliano, R. K. Jain, Appl. Phys. Lett. 34, 457 (1979).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

J. Opt. Soc. Am.

Metrologia

M. Ouhayoun, C. J. Bordé, Metrologia 13, 149 (1977).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, M. Ducloy, Phys. Rev. Lett. 44, 1251 (1980).
[CrossRef]

Sov. J. Quantum Electron.

I. J. Bigio, B. J. Feldman, R. A. Fisher, E. E. Bergman, Sov. J. Quantum Electron. 2, 1365 (1979).
[CrossRef]

Zh. Eksp. Teor. Fiz.

N. G. Basov, O. N. Kompanetz, V. S. Letokhov, V. V. Nikitin, Zh. Eksp. Teor. Fiz. 59, 394 (1970).

Other

The three components F20, E0, and F10 of the Q(38) triplet are centered about the E0 line and have a separation of 507 kHz; see C. J. Bordé, M. Ouhayoun, A. Van Lerberghe, C. Salomon, S. Avrillier, C. D. Cantrell, J. Bordé in Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979).

G. P. Agrawal, Opt. Commun. (to be published).

The sloping background of the lower trace in Fig. 2 arises from the first derivative of the linear absorption profile.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977), Sec. 3.2.

The polarizer and quarter-wave-plate combination shown in Fig. 1 serves two purposes: it acts as an optical isolator for the laser and simultaneously as an attenuator in order to keep the maximum signal below the detector damage threshold.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic layout of the experimental setup. A 10-cm-long SF6 cell is used for DFWM; Pf, Pb, and PP interact to produce the conjugate signal detected by D1. An 80-cm-long SF6 cell is used to record simultaneously the saturated absorption spectrum using detector D2.

Fig. 2
Fig. 2

Doppler-free phase-conjugate spectrum (upper trace) obtained by tuning the laser frequency over 80 MHz. For comparison, the lower trace shows the saturated-absorption spectrum of the Q branch of ν3 of SF6. Note the one-to-one correspondence of the reflectivity peak and the absorption peak. The resolution of the phase-conjugate spectrum is about 2 MHz and is limited mainly by the pressure broadening.

Fig. 3
Fig. 3

Pair Q(43) F 1 8and Q(45) F 2 7 with a separation of 3.1 MHz is well resolved. Note that the peak positions coincide exactly with the absorption-line frequencies. The reflectivity peaks overlap because of pressure broadening (0.1 Torr in the conjugate cell). The absorption peaks are much sharper, as the pressure in the absorption cell is 4 × 10−3 Torr.

Metrics