Abstract

A new kind of optical bistability is discussed that is based on mutual self-action of light beams in a nonlinear medium. In particular, fundamentally new devices are proposed that use two counterpropagating incident beams and no reflection feedback. Self-focusing (or self-defocusing) and self-bending provide bistability with positive or negative nonlinearity.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, C. M. Bowden, M. Ciftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980); IEEE J. Quantum Electron. QE-17 (1981). For an introduction to resonator devices, see H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6 (1979).
    [CrossRef]
  2. A. E. Kaplan, JETP Lett. 24, 114 (1976); Sov. Phys. JETP 45, 896 (1977); Radiophys. Quantum Electron. 22, 229 (1979); J. Quantum Electron. QE-17, 336 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 447.
  3. P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
    [CrossRef]
  4. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
    [CrossRef] [PubMed]
  5. J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
    [CrossRef]
  6. A. Javan, P. L. Kelley, IEEE J. Quantum Electron. QE-2, 470 (1966); V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, Sov. Phys. JETP 32, 501 (1971); Sov. Phys. JETP 34, 276 (1972).
    [CrossRef]
  7. D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
    [CrossRef]
  8. A. E. Kaplan, in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1981), paper ThK2.
  9. P. D. McWane, Nature 211, 1081 (1966).
    [CrossRef]
  10. A. E. Kaplan, Radiophys. Quantum Electron. 12, 692 (1969).
    [CrossRef]
  11. T. H. Marburger, F. S. Felber, Phys. Rev. A 17, 335 (1978).
    [CrossRef]
  12. Some disturbance can be caused by the edges of the diaphragm, but this is not a major problem. Morever, the diaphragm can be constructed as a Gaussian one, so that its transmittivity should depend on r as exp(−r2/d2), which causes the beams to remain Gaussian.
  13. A. E. Kaplan, JETP Lett. 9, 33 (1969).

1981 (1)

1979 (1)

P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
[CrossRef]

1978 (2)

D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
[CrossRef]

T. H. Marburger, F. S. Felber, Phys. Rev. A 17, 335 (1978).
[CrossRef]

1976 (1)

A. E. Kaplan, JETP Lett. 24, 114 (1976); Sov. Phys. JETP 45, 896 (1977); Radiophys. Quantum Electron. 22, 229 (1979); J. Quantum Electron. QE-17, 336 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 447.

1974 (1)

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

1969 (2)

A. E. Kaplan, JETP Lett. 9, 33 (1969).

A. E. Kaplan, Radiophys. Quantum Electron. 12, 692 (1969).
[CrossRef]

1966 (2)

P. D. McWane, Nature 211, 1081 (1966).
[CrossRef]

A. Javan, P. L. Kelley, IEEE J. Quantum Electron. QE-2, 470 (1966); V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, Sov. Phys. JETP 32, 501 (1971); Sov. Phys. JETP 34, 276 (1972).
[CrossRef]

Ashkin, A.

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

Bjorkholm, J. E.

Felber, F. S.

T. H. Marburger, F. S. Felber, Phys. Rev. A 17, 335 (1978).
[CrossRef]

Hermann, J.-P.

P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
[CrossRef]

Javan, A.

A. Javan, P. L. Kelley, IEEE J. Quantum Electron. QE-2, 470 (1966); V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, Sov. Phys. JETP 32, 501 (1971); Sov. Phys. JETP 34, 276 (1972).
[CrossRef]

Kaplan, A. E.

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

A. E. Kaplan, JETP Lett. 24, 114 (1976); Sov. Phys. JETP 45, 896 (1977); Radiophys. Quantum Electron. 22, 229 (1979); J. Quantum Electron. QE-17, 336 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 447.

A. E. Kaplan, Radiophys. Quantum Electron. 12, 692 (1969).
[CrossRef]

A. E. Kaplan, JETP Lett. 9, 33 (1969).

A. E. Kaplan, in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1981), paper ThK2.

Kelley, P. L.

A. Javan, P. L. Kelley, IEEE J. Quantum Electron. QE-2, 470 (1966); V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, Sov. Phys. JETP 32, 501 (1971); Sov. Phys. JETP 34, 276 (1972).
[CrossRef]

Maloney, P. J.

P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
[CrossRef]

Marburger, T. H.

T. H. Marburger, F. S. Felber, Phys. Rev. A 17, 335 (1978).
[CrossRef]

McWane, P. D.

P. D. McWane, Nature 211, 1081 (1966).
[CrossRef]

Miller, A.

D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
[CrossRef]

Mosolowski, M. H.

D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
[CrossRef]

Smith, P. W.

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
[CrossRef]

Smith, S. D.

D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
[CrossRef]

Tomlinson, W. J.

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
[CrossRef]

Appl. Phys. Lett. (1)

P. W. Smith, J.-P. Hermann, W. J. Tomlinson, P. J. Maloney, Appl. Phys. Lett. 35, 846 (1979); J. Quantum Electron. QE-17, 340 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 463.
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Javan, P. L. Kelley, IEEE J. Quantum Electron. QE-2, 470 (1966); V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, Sov. Phys. JETP 32, 501 (1971); Sov. Phys. JETP 34, 276 (1972).
[CrossRef]

JETP Lett. (2)

A. E. Kaplan, JETP Lett. 24, 114 (1976); Sov. Phys. JETP 45, 896 (1977); Radiophys. Quantum Electron. 22, 229 (1979); J. Quantum Electron. QE-17, 336 (1981); C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980), p. 447.

A. E. Kaplan, JETP Lett. 9, 33 (1969).

Nature (1)

P. D. McWane, Nature 211, 1081 (1966).
[CrossRef]

Opt. Commun. (1)

D. A. B. Miller, M. H. Mosolowski, A. Miller, S. D. Smith, Opt. Commun. 27, 133 (1978).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

T. H. Marburger, F. S. Felber, Phys. Rev. A 17, 335 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

J. E. Bjorkholm, A. Ashkin, Phys. Rev. Lett. 32, 129 (1974).
[CrossRef]

Radiophys. Quantum Electron. (1)

A. E. Kaplan, Radiophys. Quantum Electron. 12, 692 (1969).
[CrossRef]

Other (3)

A. E. Kaplan, in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1981), paper ThK2.

See, for example, C. M. Bowden, M. Ciftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980); IEEE J. Quantum Electron. QE-17 (1981). For an introduction to resonator devices, see H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6 (1979).
[CrossRef]

Some disturbance can be caused by the edges of the diaphragm, but this is not a major problem. Morever, the diaphragm can be constructed as a Gaussian one, so that its transmittivity should depend on r as exp(−r2/d2), which causes the beams to remain Gaussian.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Various configurations realizing optical bistability from mutual self-focusing (or self-defocusing) of counter-propagated beams. M, mirror; Dp, diaphragm; Le, lens. The solid lines show the spatial behavior of the low-power beams; the dotted lines correspond to the behavior of high-power beams after their switch into a high-transmittance state of the system.

Fig. 2
Fig. 2

Hysteresis of transmittivity T = Pout/Pin in the cases of a, self-trapping and b, external self-action.

Fig. 3
Fig. 3

Configurations realizing bistability from mutual self-bending of the light beams. M, mirror; K, knife edge.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E = E 1 exp ( i k z ) + E 2 exp ( i k z ) ,
2 i k E j / z + Δ E j + k 2 E j 0 1 Δ j NL ( | E 1 2 | , | E 2 2 | ) = 0 , j = 1 , 2 ,
Δ 1 NL = 2 ( | E 1 | 2 + 2 | E 2 | 2 ) Δ 2 NL = 2 ( | E 2 | 2 + 2 | E 1 | 2 ) .
( F out + l n ) 1 + F in = ( F 0 + l n ) 1 ( 1 + l n F in ) 1 ,
( F 0 1 ) j 4 2 l c 0 [ ( P in ρ in 4 ) j + 2 ( P out ρ out 4 ) 3 j ] , j = 1 , 2 ,
P 0 P in = { 1 + 2 T [ ( 1 + a 2 ) T + a 2 ] 2 } × [ 1 A ± μ ( T 1 1 a 2 ) 1 / 2 l n L ] ,
P 0 = c ρ in 4 0 4 l L 2 , μ = d / ρ in , a = L / k d ρ in , A = 1 + L + l / n F in .
P S B 2 α n 3 c ρ in 3 / π | 2 | L ,

Metrics