## Abstract

Degenerate four-wave mixing experiments have been performed using a liquid suspension of 0.234-*μ*m-diameter latex spheres as the nonlinear medium. The measured effective optical Kerr coefficient, *n*_{2}, is 3.6 × 10^{−3} (MW/cm^{2})^{−1}. This is ~10^{5}× the value for CS_{2}. Measured grating reflectivity, formation, and decay times are in reasonable agreement with a simple model assuming Rayleigh scattering and Brownian diffusion.

© 1981 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\mathbf{P}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}{{n}_{b}}^{2}\left(\frac{{n}^{2}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}1}{{n}^{2}\phantom{\rule{0.2em}{0ex}}+\phantom{\rule{0.2em}{0ex}}2}\right){r}^{3}\mathbf{E}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\alpha \mathbf{E},$$
(2)
$${F}_{\text{grad}}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\left(\mathbf{P}\phantom{\rule{0.2em}{0ex}}\cdot \phantom{\rule{0.2em}{0ex}}\nabla \right)\mathbf{E}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\left(1/2\right)\alpha \nabla {{E}_{0}}^{2},$$
(3)
$$\upsilon \phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\frac{{F}_{\text{grad}}}{6\mathit{\text{\pi r\eta}}},$$
(4)
$${\tau}_{F}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\Lambda /4\upsilon ,$$
(5)
$${\tau}_{D}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\frac{3\mathit{\text{\pi r\eta}}{\Lambda}^{2}}{16\mathit{\text{kT}}},$$