Abstract

Phase-matched four-wave mixing in sodium vapor with a helium buffer gas is carried out in a noncoplanar geometry. The directions of the four light beams remain nondegenerate even if all frequencies are equal. A sharp zero-difference frequency resonance in the intensity of the parametrically generated fourth beam by three incident beams is observed that is proportional to the square of the pressure of the buffer gas. A theoretical interpretation of this effect caused by elimination of destructive interference between two coherent pathways is presented.

© 1981 Optical Society of America

Full Article  |  PDF Article
Related Articles
Multiple conical emissions from a strongly driven atomic system

Y. Shevy and M. Rosenbluh
J. Opt. Soc. Am. B 5(1) 116-122 (1988)

Induced gain and modified absorption of a weak probe beam in a strongly driven sodium vapor

Mark T. Gruneisen, Kenneth R. MacDonald, and Robert W. Boyd
J. Opt. Soc. Am. B 5(1) 123-129 (1988)

Optimization of two-photon-resonant four-wave mixing: application to 130.2-nm generation in mercury vapor

A. V. Smith, W. J. Alford, and G. R. Hadley
J. Opt. Soc. Am. B 5(7) 1503-1519 (1988)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription