Abstract

Near-infrared and midinfrared radiation has been generated by means of multiple-order stimulated Raman scattering in hollow-core silica fibers filled with CBrCl3 and CCl4 and pumped by Nd:YAG laser radiation. Radiation between 1.2 and 2.3 μm has been generated in 300-cm-long, 12-μm core-diameter liquid-filled fibers using peak powers of 11 kW. Single-mode liquid-core waveguides were constructed by using CCl4–CBrCl3 mixtures of adjustable refractive index.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211 (1978).
    [CrossRef]
  2. R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62 (1972);B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Characteristics of a fiber optic Raman laser,” Appl. Opt. 16, 1239 (1977).
    [CrossRef] [PubMed]
  3. R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
    [CrossRef]
  4. J. Stone, “Cw Raman fiber amplifier,”Appl. Phys. Lett. 26, 163 (1975).
    [CrossRef]
  5. E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303 (1970).
    [CrossRef]
  6. C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum generated in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
    [CrossRef]
  7. J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386 (1972).
    [CrossRef]
  8. J. Stone, “Measurements of the absorption of light in low-loss liquids,” J. Opt. Soc. Am. 62, 327 (1972).
    [CrossRef]
  9. Transmission data taken from Spectroquality Solvents (MC/B Manufacturing Chemists,Norwood, Ohio, 1971), pp. 8, 14.
  10. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1963), p. 106.
  11. J. Stone, “Measurements of Rayleigh scattering in liquids using optical fibers,” Appl. Opt. 12, 1824 (1973).
    [CrossRef] [PubMed]
  12. We found that pure CCl4-filled silica fibers were weakly guiding and lossy. This prompted use of CCl4–CBrCl3 mixtures of higher refractive index.
  13. E. Snitzer, H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 51, 499 (1961).
    [CrossRef]
  14. R. G. Smith, “Optical power handling capacity of low-loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489 (1972).
    [CrossRef] [PubMed]
  15. M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169 (1969).
    [CrossRef]
  16. M. Maier, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1967).
    [CrossRef]
  17. H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–197.
  18. D. von der Linde, “Picosecond interactions in liquids and solids,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 203–273.
  19. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
    [CrossRef]
  20. R. H. Storz, “Construction of a multijoule laser at Bell Labs shows how technology developed for government programs can be transferred to other organizations,” Laser Focus 17 (8), 65 (1981).

1981 (1)

R. H. Storz, “Construction of a multijoule laser at Bell Labs shows how technology developed for government programs can be transferred to other organizations,” Laser Focus 17 (8), 65 (1981).

1978 (2)

Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211 (1978).
[CrossRef]

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum generated in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

1975 (1)

J. Stone, “Cw Raman fiber amplifier,”Appl. Phys. Lett. 26, 163 (1975).
[CrossRef]

1973 (1)

1972 (5)

J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386 (1972).
[CrossRef]

J. Stone, “Measurements of the absorption of light in low-loss liquids,” J. Opt. Soc. Am. 62, 327 (1972).
[CrossRef]

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62 (1972);B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Characteristics of a fiber optic Raman laser,” Appl. Opt. 16, 1239 (1977).
[CrossRef] [PubMed]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[CrossRef]

R. G. Smith, “Optical power handling capacity of low-loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489 (1972).
[CrossRef] [PubMed]

1970 (2)

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303 (1970).
[CrossRef]

1969 (1)

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169 (1969).
[CrossRef]

1967 (1)

M. Maier, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1967).
[CrossRef]

1961 (1)

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Colles, M. J.

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169 (1969).
[CrossRef]

French, W. G.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum generated in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1967).
[CrossRef]

Grasiuk, Z.

Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211 (1978).
[CrossRef]

Ippen, E. P.

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62 (1972);B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Characteristics of a fiber optic Raman laser,” Appl. Opt. 16, 1239 (1977).
[CrossRef] [PubMed]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[CrossRef]

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303 (1970).
[CrossRef]

Kaiser, W.

M. Maier, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1967).
[CrossRef]

Klockner, H. W.

H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–197.

Lin, C.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum generated in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

Maier, M.

M. Maier, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1967).
[CrossRef]

Nakamoto, K.

K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1963), p. 106.

Nguyen, V. T.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum generated in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

Osterberg, H.

Schrotter, H. W.

H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–197.

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Smith, R. G.

Snitzer, E.

Stolen, R. H.

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62 (1972);B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Characteristics of a fiber optic Raman laser,” Appl. Opt. 16, 1239 (1977).
[CrossRef] [PubMed]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[CrossRef]

Stone, J.

J. Stone, “Cw Raman fiber amplifier,”Appl. Phys. Lett. 26, 163 (1975).
[CrossRef]

J. Stone, “Measurements of Rayleigh scattering in liquids using optical fibers,” Appl. Opt. 12, 1824 (1973).
[CrossRef] [PubMed]

J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386 (1972).
[CrossRef]

J. Stone, “Measurements of the absorption of light in low-loss liquids,” J. Opt. Soc. Am. 62, 327 (1972).
[CrossRef]

Storz, R. H.

R. H. Storz, “Construction of a multijoule laser at Bell Labs shows how technology developed for government programs can be transferred to other organizations,” Laser Focus 17 (8), 65 (1981).

Tynes, A. R.

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62 (1972);B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Characteristics of a fiber optic Raman laser,” Appl. Opt. 16, 1239 (1977).
[CrossRef] [PubMed]

von der Linde, D.

D. von der Linde, “Picosecond interactions in liquids and solids,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 203–273.

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Zubarev, I. G.

Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211 (1978).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. 17, 211 (1978).
[CrossRef]

Appl. Phys. Lett. (4)

R. H. Stolen, E. P. Ippen, A. R. Tynes, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62 (1972);B. S. Kawasaki, K. O. Hill, D. C. Johnson, “Characteristics of a fiber optic Raman laser,” Appl. Opt. 16, 1239 (1977).
[CrossRef] [PubMed]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276 (1972).
[CrossRef]

J. Stone, “Cw Raman fiber amplifier,”Appl. Phys. Lett. 26, 163 (1975).
[CrossRef]

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303 (1970).
[CrossRef]

Electron. Lett. (1)

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum generated in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386 (1972).
[CrossRef]

J. Opt. Soc. Am. (2)

Laser Focus (1)

R. H. Storz, “Construction of a multijoule laser at Bell Labs shows how technology developed for government programs can be transferred to other organizations,” Laser Focus 17 (8), 65 (1981).

Opt. Commun. (1)

M. J. Colles, “Efficient stimulated Raman scattering from picosecond pulses,” Opt. Commun. 1, 169 (1969).
[CrossRef]

Phys. Rev. (1)

M. Maier, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1967).
[CrossRef]

Phys. Rev. A (1)

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient stimulated Raman scattering,” Phys. Rev. A 2, 60 (1970).
[CrossRef]

Other (5)

We found that pure CCl4-filled silica fibers were weakly guiding and lossy. This prompted use of CCl4–CBrCl3 mixtures of higher refractive index.

H. W. Schrotter, H. W. Klockner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy, A. Weber, ed. (Springer-Verlag, Berlin, 1979), pp. 123–197.

D. von der Linde, “Picosecond interactions in liquids and solids,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 203–273.

Transmission data taken from Spectroquality Solvents (MC/B Manufacturing Chemists,Norwood, Ohio, 1971), pp. 8, 14.

K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1963), p. 106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of experimental arrangement.

Fig. 2
Fig. 2

Spectral emission of a CBrCl3-filled hollow fiber 300 cm long with 12-μm core diameter. The peak pump power was 11 kW. The resolution of the monochromater was 2 nm.

Metrics