Abstract

The energy transfer between two beams (signal and reference, respectively) writing a dynamic-volume hologram in photorefractive BSO crystals is applied to the image amplification of a diffuse object. The image intensity transmitted by the crystal is amplified 10 × in the presence of the pump reference beam. The crystal is used in the drift recording mode (applied electric field, E0 = 10 kV cm−1; fringe spacing, Λ = 3 μm), and beam coupling is induced by the nonlocal response of the crystal that is due to the fringe displacement at a constant speed. We have applied this two-wave mixing configuration to a real-time optical-processing operation; the related energy transfer and stationary image amplification permit the mode pattern visualization of a vibrating structure.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Staebler, J. J. Amodei, “Coupled wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 34, 1042 (1972).
    [CrossRef]
  2. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
    [CrossRef]
  3. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
    [CrossRef]
  4. V. Markov, S. Odulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95 (1979).
    [CrossRef]
  5. A. Marrakchi, J. P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. Lett. 24, 131 (1981).
  6. J. Fineberg, R. W. Hellwarth, “Phase conjugating mirror with continuous wave gain,” Opt. Lett. 5, 519 (1980).
    [CrossRef]
  7. J. P. Huignard, A. Marrakchi, “Signal beam amplification in two wave mixing experiments with photo refractive B.S.O. crystals,” Opt. Commun. 38, 249 (1981).
    [CrossRef]
  8. A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in B.S.O. crystals to mode pattern visualization of diffuse vibrating structure,” Opt. Commun. 34, 15 (1980).
    [CrossRef]
  9. R. J. Collier, C. B. Burckhardt, L. H. Lin, eds., Optical Holography (Academic, New York, 1971), pp. 437–443.
  10. T. J. Hall, M. A. Fiddy, M. S. Ner, “Detector for an optical-fiber acoustic sensor using dynamic holographic interferometry,” Opt. Lett. 5, 485 (1980).
    [CrossRef] [PubMed]

1981 (2)

A. Marrakchi, J. P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. Lett. 24, 131 (1981).

J. P. Huignard, A. Marrakchi, “Signal beam amplification in two wave mixing experiments with photo refractive B.S.O. crystals,” Opt. Commun. 38, 249 (1981).
[CrossRef]

1980 (3)

1979 (3)

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

V. Markov, S. Odulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95 (1979).
[CrossRef]

1972 (1)

D. L. Staebler, J. J. Amodei, “Coupled wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 34, 1042 (1972).
[CrossRef]

Amodei, J. J.

D. L. Staebler, J. J. Amodei, “Coupled wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 34, 1042 (1972).
[CrossRef]

Fiddy, M. A.

Fineberg, J.

Günter, P.

A. Marrakchi, J. P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. Lett. 24, 131 (1981).

Hall, T. J.

Hellwarth, R. W.

Herriau, J. P.

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in B.S.O. crystals to mode pattern visualization of diffuse vibrating structure,” Opt. Commun. 34, 15 (1980).
[CrossRef]

Huignard, J. P.

A. Marrakchi, J. P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. Lett. 24, 131 (1981).

J. P. Huignard, A. Marrakchi, “Signal beam amplification in two wave mixing experiments with photo refractive B.S.O. crystals,” Opt. Commun. 38, 249 (1981).
[CrossRef]

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in B.S.O. crystals to mode pattern visualization of diffuse vibrating structure,” Opt. Commun. 34, 15 (1980).
[CrossRef]

Kukhtarev, N. V.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

Markov, V.

V. Markov, S. Odulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

Marrakchi, A.

J. P. Huignard, A. Marrakchi, “Signal beam amplification in two wave mixing experiments with photo refractive B.S.O. crystals,” Opt. Commun. 38, 249 (1981).
[CrossRef]

A. Marrakchi, J. P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. Lett. 24, 131 (1981).

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in B.S.O. crystals to mode pattern visualization of diffuse vibrating structure,” Opt. Commun. 34, 15 (1980).
[CrossRef]

Ner, M. S.

Odulov, S.

V. Markov, S. Odulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95 (1979).
[CrossRef]

Odulov, S. G.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

Soskin, M.

V. Markov, S. Odulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95 (1979).
[CrossRef]

Soskin, M. S.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler, J. J. Amodei, “Coupled wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 34, 1042 (1972).
[CrossRef]

Vinetskii, V. L.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

A. Marrakchi, J. P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. Lett. 24, 131 (1981).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. Beam coupling and light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

J. Appl. Phys. (1)

D. L. Staebler, J. J. Amodei, “Coupled wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 34, 1042 (1972).
[CrossRef]

Opt. Commun. (2)

J. P. Huignard, A. Marrakchi, “Signal beam amplification in two wave mixing experiments with photo refractive B.S.O. crystals,” Opt. Commun. 38, 249 (1981).
[CrossRef]

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in B.S.O. crystals to mode pattern visualization of diffuse vibrating structure,” Opt. Commun. 34, 15 (1980).
[CrossRef]

Opt. Laser Technol. (1)

V. Markov, S. Odulov, M. Soskin, “Dynamic holography and optical image processing,” Opt. Laser Technol. 11, 95 (1979).
[CrossRef]

Opt. Lett. (2)

Sov. Phys. Usp. (1)

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742 (1979).
[CrossRef]

Other (1)

R. J. Collier, C. B. Burckhardt, L. H. Lin, eds., Optical Holography (Academic, New York, 1971), pp. 437–443.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Two-wave mixing experiment with photorefractive BSO crystals. Recording wavelength, λ = 514 nm. Crystal size, 10 mm × 10 mm. Thickness, 10 mm; − beam angle, 2 θ0 = 10°. Applied electric field in the 001 direction, E0 = 10 kV cm−1. Incident intensities, IR0=10mW cm−2 and IS0=5 μW cm−2. Fringe displacement speed, V0 = 3.2 nsec−1. Solid lines, interference fringes; dashed lines, index modulation.

Fig. 2
Fig. 2

(a) Image transmitted through the crystal (loudspeaker membrane), (b) Stationary 10 × -amplified image that is the self-diffraction of the pump reference beam in the shifted phase-volume hologram.

Fig. 3
Fig. 3

Application of the energy transfer and image amplification to the mode pattern visualization of the vibrating loudspeaker membrane. (Vibration frequencies, f = 2.2 kHz and f = 1.6 kHz.)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I S = I S 0 exp [ ( Γ α ) l ] , I S 0 I R 0 ,
Γ = 4 π λ cos θ C E 0 K υ τ 1 + K 2 υ 2 τ 2 ,
K υ 0 τ = 1 .
E 0 = 10 kV cm 1 , α = 2 cm 1 , l = 10 mm ,
I ( x , t ) = I 0 [ 1 + m cos ( K x K υ t 4 π δ λ cos Ω t ) ] ,
Δ n ( x , t ) = 0 t m C E 0 cos ( K x K υ t 4 π δ λ cos Ω t ) exp ( t t τ ) d t .
Δ n ( x , t ) = m C E 0 0 t J 0 ( 4 π δ λ ) × cos ( K x K υ t ) exp ( t t τ ) d t + 2 m C E 0 0 t exp ( t t τ ) [ J 1 ( 4 π δ λ ) × cos Ω t sin ( K x K υ t ) J 2 ( 4 π δ λ ) × cos 2 Ω t cos ( K x K υ t ) + ] d t .
Δ n ( x , t ) = m C E 0 J 0 ( 4 π δ λ ) cos ( K x K υ t + ϕ ) , ϕ = arctan K υ τ .
Δ n 2 = m C E 0 J 0 ( 4 π δ λ ) K υ τ 1 + K 2 υ 2 τ 2 .
I S = I S 0 exp { [ 4 π C E 0 λ cos θ K υ τ 1 + K 2 υ 2 τ 2 J 0 ( 4 π δ λ ) a ] l } ,
I S = I S 0 exp { [ 2 π C E 0 λ cos θ J 0 ( 4 π δ λ ) a ] l } .
M = ( I S ) δ = 0 ( I S ) δ 0 ( I S ) δ = 0 + ( I S ) δ 0 , M = exp ( Γ l ) 1 exp ( Γ l ) + 1 .

Metrics