Abstract

Several experiments have been reported that relate to the measurement of the collisionless intramolecular energy transfer and dephasing rates for SF6. These measured relaxation times vary from less than 30 psec to 3 μsec. In addition, most measurements yield relaxation times that are comparable with the optical-pulse duration of the laser used in the measurement. We consider the effects of inhomogeneous and homogeneous dephasing processes in the optical interaction. The intensity and phase fluctuations in the laser and consequently the finite bandwidth of the optical source significantly affect this measurement. We present a simple model to account for the observed correlation with the optical-pulse duration.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Frankel, J. Chem. Phys. 65, 1696 (1976).
    [CrossRef]
  2. D. S. Frankel, T. J. Manuccia, Chem. Phys. Lett. 54, 451 (1978).
    [CrossRef]
  3. T. F. Deutsch, S. R. J. Brueck, Chem. Phys. Lett. 54, 258 (1978).
    [CrossRef]
  4. T. F. Deutsch, S. R. J. Brueck, J. Chem. Phys. 70, 2063 (1979).
    [CrossRef]
  5. H. S. Kwok, E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).
    [CrossRef]
  6. D. G. Steel, J. F. Lam, Phys. Rev. Lett. 43, 1588 (1979).
    [CrossRef]
  7. This result was called to the authors' attention by D. Ham and D. G. Steel and has also been noted by other investigators.
  8. B. Comaskey, R. E. Scotti, R. L. Shoemaker, Opt. Lett. 6, 45 (1981).
    [CrossRef] [PubMed]
  9. P. F. Moulton, D. M. Larsen, J. N. Walpole, A. Mooradian, Opt. Lett. 1, 51 (1977).
    [CrossRef] [PubMed]
  10. J. H. Eberly, Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979), p. 80.
  11. M. G. Raymer, J. Mostowski, J. L. Carlsten, Phys. Rev. A 19, 2304 (1979).
    [CrossRef]
  12. A. Abragam, Principles of Nuclear Magnetism (Oxford, Fairlawn, N.J., 1961), pp. 28ff.
  13. C. L. Tang, B. D. Silverman, Physics of Quantum Electronics (proceedings), P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966), p. 291.

1981

1979

D. G. Steel, J. F. Lam, Phys. Rev. Lett. 43, 1588 (1979).
[CrossRef]

M. G. Raymer, J. Mostowski, J. L. Carlsten, Phys. Rev. A 19, 2304 (1979).
[CrossRef]

T. F. Deutsch, S. R. J. Brueck, J. Chem. Phys. 70, 2063 (1979).
[CrossRef]

1978

H. S. Kwok, E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).
[CrossRef]

D. S. Frankel, T. J. Manuccia, Chem. Phys. Lett. 54, 451 (1978).
[CrossRef]

T. F. Deutsch, S. R. J. Brueck, Chem. Phys. Lett. 54, 258 (1978).
[CrossRef]

1977

1976

D. S. Frankel, J. Chem. Phys. 65, 1696 (1976).
[CrossRef]

Abragam, A.

A. Abragam, Principles of Nuclear Magnetism (Oxford, Fairlawn, N.J., 1961), pp. 28ff.

Brueck, S. R. J.

T. F. Deutsch, S. R. J. Brueck, J. Chem. Phys. 70, 2063 (1979).
[CrossRef]

T. F. Deutsch, S. R. J. Brueck, Chem. Phys. Lett. 54, 258 (1978).
[CrossRef]

Carlsten, J. L.

M. G. Raymer, J. Mostowski, J. L. Carlsten, Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Comaskey, B.

Deutsch, T. F.

T. F. Deutsch, S. R. J. Brueck, J. Chem. Phys. 70, 2063 (1979).
[CrossRef]

T. F. Deutsch, S. R. J. Brueck, Chem. Phys. Lett. 54, 258 (1978).
[CrossRef]

Eberly, J. H.

J. H. Eberly, Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979), p. 80.

Frankel, D. S.

D. S. Frankel, T. J. Manuccia, Chem. Phys. Lett. 54, 451 (1978).
[CrossRef]

D. S. Frankel, J. Chem. Phys. 65, 1696 (1976).
[CrossRef]

Kwok, H. S.

H. S. Kwok, E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).
[CrossRef]

Lam, J. F.

D. G. Steel, J. F. Lam, Phys. Rev. Lett. 43, 1588 (1979).
[CrossRef]

Larsen, D. M.

Manuccia, T. J.

D. S. Frankel, T. J. Manuccia, Chem. Phys. Lett. 54, 451 (1978).
[CrossRef]

Mooradian, A.

Mostowski, J.

M. G. Raymer, J. Mostowski, J. L. Carlsten, Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Moulton, P. F.

Raymer, M. G.

M. G. Raymer, J. Mostowski, J. L. Carlsten, Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Scotti, R. E.

Shoemaker, R. L.

Silverman, B. D.

C. L. Tang, B. D. Silverman, Physics of Quantum Electronics (proceedings), P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966), p. 291.

Steel, D. G.

D. G. Steel, J. F. Lam, Phys. Rev. Lett. 43, 1588 (1979).
[CrossRef]

Tang, C. L.

C. L. Tang, B. D. Silverman, Physics of Quantum Electronics (proceedings), P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966), p. 291.

Walpole, J. N.

Yablonovitch, E.

H. S. Kwok, E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).
[CrossRef]

Chem. Phys. Lett.

D. S. Frankel, T. J. Manuccia, Chem. Phys. Lett. 54, 451 (1978).
[CrossRef]

T. F. Deutsch, S. R. J. Brueck, Chem. Phys. Lett. 54, 258 (1978).
[CrossRef]

J. Chem. Phys.

T. F. Deutsch, S. R. J. Brueck, J. Chem. Phys. 70, 2063 (1979).
[CrossRef]

D. S. Frankel, J. Chem. Phys. 65, 1696 (1976).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. G. Raymer, J. Mostowski, J. L. Carlsten, Phys. Rev. A 19, 2304 (1979).
[CrossRef]

Phys. Rev. Lett.

H. S. Kwok, E. Yablonovitch, Phys. Rev. Lett. 41, 745 (1978).
[CrossRef]

D. G. Steel, J. F. Lam, Phys. Rev. Lett. 43, 1588 (1979).
[CrossRef]

Other

This result was called to the authors' attention by D. Ham and D. G. Steel and has also been noted by other investigators.

J. H. Eberly, Laser Spectroscopy IV, H. Walther, K. W. Rothe, eds. (Springer-Verlag, Berlin, 1979), p. 80.

A. Abragam, Principles of Nuclear Magnetism (Oxford, Fairlawn, N.J., 1961), pp. 28ff.

C. L. Tang, B. D. Silverman, Physics of Quantum Electronics (proceedings), P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966), p. 291.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

q ¨ + γ i q ˙ + ω i 2 q = F ( t ) ,
q ˜ ( ω , ω i ) = / 2 q ( t , ω i ) e i ω t d t
q ( t , ω i ) = 1 2 π q ˜ ( ω , ω i ) e i ω t d ω .
q ( t , ω i ) = 1 2 π F ˜ ( ω ) e i ω t ( ω ω + ) ( ω ω ) d ω ,
ω ± ± ω i i γ / 2 ,
F ˜ ( ω ) = F ( t ) e i ω t d t .
q ( t ) = g ( ω i ) q ( t , ω i ) d ω i .
σ ω = 1 σ t 2 τ p .
q ( t , Δ ) = i F 0 2 ν exp [ 1 2 ( Δ σ ω ) 2 i Δ ( t t 0 ) i ν t γ 2 ( t t 0 ) ] ,
g ( Δ ) = 1 2 π Δ 0 2 exp [ 1 2 ( Δ Δ 0 ) 2 ] ,
g ( Δ ) d Δ = 1 .
| q | 2 = F 0 2 4 ν 2 1 1 + ( Δ 0 σ ω ) 2 × exp [ Δ 0 2 1 + ( Δ 0 σ ω ) 2 ( t t 0 ) 2 γ ( t t 0 ) ] .
σ 2 = Δ 0 2 + σ ω 2 .
| q ( t ) | 2 = F 0 2 ν 2 1 ( Δ 0 τ p ) 2 exp [ 4 ( t τ p ) 2 ] .

Metrics