Abstract

The local parameters of linear, circular, and elliptical birefringence of backscattered light along a single-mode fiber are analyzed, and the twist–bending-induced elliptical birefringence in an extremely low birefringent single-mode fiber is measured using the backscattering method. The experimental results are in good agreement with the theoretical calculations. For a 130-μm-diameter fiber, twisted by 133°/m and wound around a drum of 15-cm radius, the induced elliptical birefringence is|Ω| = 18°/m at λ = 904 nm.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173–175 (1980).
    [CrossRef] [PubMed]
  2. R. Ulrich, M. Johnson, “Fiber-ring interferometer: polarization analysis,” Opt. Lett. 4, 152–154 (1979).
    [CrossRef] [PubMed]
  3. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-induced birefringence in single mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef] [PubMed]
  4. A. M. Smith, “Birefringence induced by bends and twists in single mode optical fiber,” Appl. Opt. 19, 2606–2611 (1980).
    [CrossRef] [PubMed]
  5. R. Ulrich, A. Simon, “Polarization optics of twisted single mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
    [CrossRef] [PubMed]
  6. B. Y. Kim, S. S. Choi, “Backscattering measurement of bending-induced birefringence in single mode fibers,” Electron. Lett. 17, 193–194 (1981).
    [CrossRef]
  7. E. Brinkmeyer, “Analysis of the backscattering method for single model optical fibers,” J. Opt. Soc. Am. 70, 1010–1012 (1980).
    [CrossRef]
  8. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
    [CrossRef] [PubMed]

1981

B. Y. Kim, S. S. Choi, “Backscattering measurement of bending-induced birefringence in single mode fibers,” Electron. Lett. 17, 193–194 (1981).
[CrossRef]

A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
[CrossRef] [PubMed]

1980

1979

Brinkmeyer, E.

Choi, S. S.

B. Y. Kim, S. S. Choi, “Backscattering measurement of bending-induced birefringence in single mode fibers,” Electron. Lett. 17, 193–194 (1981).
[CrossRef]

Eickhoff, W.

Johnson, M.

Kim, B. Y.

B. Y. Kim, S. S. Choi, “Backscattering measurement of bending-induced birefringence in single mode fibers,” Electron. Lett. 17, 193–194 (1981).
[CrossRef]

Rashleigh, S. C.

Rogers, A. J.

Simon, A.

Smith, A. M.

Ulrich, R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The Poincaré sphere representation of the state of polarization and birefringence in a single-mode fiber.

Fig. 2
Fig. 2

The calculated evolution of polarization of backscattered light Cb(l) in an elliptically birefringent single-mode fiber. The input polarization is 2ϕ0 = 60°, 2ψ0 = 0°, and θ = 45°. The parameters along the curve are |Ω|l.

Fig. 3
Fig. 3

Measured OTDR signals for twist–bending-induced elliptical birefringence for three different input states. The bending radius is 15 cm, and the twist rate is 133°/m.

Fig. 4
Fig. 4

Calculated signal patterns of OTDR for the three cases in Fig. 3. (a) 2ϕ0 = 0°, 2ψ0 = 0°; (b) 2ϕ0 = 60°, 2ψ0 = 0°; (c)2ϕ0 = 90°, 2ψ0 = 0°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tan θ = ± | α | / | β | ( 90 ° θ 90 ° ) ,
C ( l ) = ( x ( l ) y ( l ) z ( l ) ) = ( cos 2 ψ cos 2 ϕ cos 2 ψ sin 2 ϕ sin 2 ψ ) = R y ( θ ) R x ( | Ω | l ) R y ( θ ) ( cos 2 ψ 0 cos 2 ϕ 0 cos 2 ψ 0 sin 2 ϕ 0 sin 2 ψ 0 ) ,
R x ( δ ) = ( 1 0 0 0 cos δ sin δ 0 sin δ cos δ ) , R y ( θ ) = ( cos θ 0 sin θ 0 1 0 sin θ 0 cos θ ) .
B = ( 1 1 1 1 1 0 0 0 1 ) .
C b ( l ) = TBT C ( 0 ) ,

Metrics