Abstract

We have observed phase-conjugate signals in n-type Hg1−xCdxTe through bandgap-resonant degenerate four-wave mixing by using a chopped cw-CO2 laser pump operating at 10.6 μm and ∼1 W/cm2. The observed signals are attributed to the strong resonant third-order nonlinearity [χ(3)] arising from the electron–hole pair production by the pump laser. Our data translate into a value of χ(3) ∼3 × 10−2 esu, which is in good agreement with that calculated using the model of Jain et al. [Appl. Phys. Lett. 35, 494 (1979)].

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
    [CrossRef]
  2. R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 494 (1979).
    [CrossRef]
  3. E. E. Bergmann, I. J. Bigion, B. J. Feldman, R. A. Fischer, Opt. Lett. 3, 82 (1978);R. A. Jain, M. B. Klein, R. C. Lind, Opt. Lett. 4, 328 (1979).
    [CrossRef] [PubMed]
  4. M. A. Khan, P. W. Kruse, J. F. Ready, Opt. Lett. 5, 261 (1980).
    [CrossRef] [PubMed]
  5. M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
    [CrossRef] [PubMed]
  6. J. L. Schmit, E. L. Stelzer, J. Appl. Phys 40, 4865 (1969).
    [CrossRef]
  7. W. Scott, J. Appl. Phys. 43, 1055 (1972).
    [CrossRef]
  8. D. A. Nelson, presented at the NATO HgCdTe Workshop, Grenoble, France, April 23–24, 1981.
  9. R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
    [CrossRef]
  10. D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
    [CrossRef]

1981 (1)

D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

1980 (3)

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
[CrossRef] [PubMed]

M. A. Khan, P. W. Kruse, J. F. Ready, Opt. Lett. 5, 261 (1980).
[CrossRef] [PubMed]

1979 (1)

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 494 (1979).
[CrossRef]

1978 (2)

1972 (1)

W. Scott, J. Appl. Phys. 43, 1055 (1972).
[CrossRef]

1969 (1)

J. L. Schmit, E. L. Stelzer, J. Appl. Phys 40, 4865 (1969).
[CrossRef]

Bergmann, E. E.

Bigion, I. J.

Bogart, T. J.

M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
[CrossRef] [PubMed]

Feldman, B. J.

Fischer, R. A.

Jain, R. K.

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 494 (1979).
[CrossRef]

Khan, M. A.

M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
[CrossRef] [PubMed]

M. A. Khan, P. W. Kruse, J. F. Ready, Opt. Lett. 5, 261 (1980).
[CrossRef] [PubMed]

Klein, M. B.

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 494 (1979).
[CrossRef]

Kruse, P. W.

M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
[CrossRef] [PubMed]

M. A. Khan, P. W. Kruse, J. F. Ready, Opt. Lett. 5, 261 (1980).
[CrossRef] [PubMed]

Miller, D. A. B.

D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

Nelson, D. A.

D. A. Nelson, presented at the NATO HgCdTe Workshop, Grenoble, France, April 23–24, 1981.

Prise, M. E.

D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

Ready, J. F.

M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
[CrossRef] [PubMed]

M. A. Khan, P. W. Kruse, J. F. Ready, Opt. Lett. 5, 261 (1980).
[CrossRef] [PubMed]

Schmit, J. L.

J. L. Schmit, E. L. Stelzer, J. Appl. Phys 40, 4865 (1969).
[CrossRef]

Scott, W.

W. Scott, J. Appl. Phys. 43, 1055 (1972).
[CrossRef]

Seaton, C. T.

D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

Smith, S. D.

D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

Steel, D. G.

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

Stelzer, E. L.

J. L. Schmit, E. L. Stelzer, J. Appl. Phys 40, 4865 (1969).
[CrossRef]

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Appl. Phys. Lett. (2)

R. K. Jain, M. B. Klein, Appl. Phys. Lett. 35, 494 (1979).
[CrossRef]

R. K. Jain, D. G. Steel, Appl. Phys. Lett. 37, 1 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

J. Appl. Phys (1)

J. L. Schmit, E. L. Stelzer, J. Appl. Phys 40, 4865 (1969).
[CrossRef]

J. Appl. Phys. (1)

W. Scott, J. Appl. Phys. 43, 1055 (1972).
[CrossRef]

Opt. Lett (1)

M. A. Khan, T. J. Bogart, P. W. Kruse, J. F. Ready, Opt. Lett 5, 469 (1980).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

Other (1)

D. A. Nelson, presented at the NATO HgCdTe Workshop, Grenoble, France, April 23–24, 1981.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Phase-conjugate signal versus the sample temperature for Sample (1) with x = 0.216 and Sample (2) with x = 0.225.

Fig. 3
Fig. 3

Power-reflection coefficient (%) versus (I1I2)1/2, where I1 and I2 are the front and the back pump intensities, respectively.

Tables (1)

Tables Icon

Table 1 Calculated Values of χ(3) for the Hg1−xCdxTe Samples Used for the Experiment

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E g ( eV ) = 0.25 + 1.59 x + ( 5.233 ) 10 4 × ( 1 2.08 x ) ( T K ) + 0.327 x 3 .
χ ( 3 ) = η α n c e 2 τ 8 π m e h * ω 3 ,
τ = τ D τ R / ( τ D + τ R ) ,
τ D = ( Λ 2 / 4 π 2 ) / D a ,

Metrics