Abstract

This Letter describes the extension of saturated absorption spectroscopy to spatially resolved (point) absorption measurements for diagnostic applications. The technique modifies the standard configuration of Doppler-free saturation spectroscopy by using crossed, rather than counterpropagating, saturating and probe beams. The method is demonstrated in a study of the distribution of atomic sodium aspirated from a salt solution into an atmospheric-pressure hydrogen–air flame. Similar adaptations of other two-beam Doppler-free spectroscopic methods can be used to provide spatially resolved measurement techniques.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, in High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, Berlin, 1976).
  2. For a review of these techniques, seeA. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
    [CrossRef]
  3. R. L. Farrow, L. A. Rahn, “Spatially resolved infrared absorption measurements: application of an optical Stark effect,” Opt. Lett. 6, 108 (1981).
    [CrossRef] [PubMed]
  4. J. E. M. Goldsmith, J. E. Lawler, “Optogalvanic spectroscopy,” Contemp. Phys. 22, 235 (1981).
    [CrossRef]
  5. E. W. Weber, J. E. M. Goldsmith, “Anomalous shifts of hydrogen Balmer-α fine structures lines in helium,” Phys. Lett. 70A, 95 (1979).
  6. J. E. M. Goldsmith (to be published).
  7. J. E. M. Goldsmith, R. L. Farrow (to be published).
  8. C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170 (1976).
    [CrossRef]
  9. J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
    [CrossRef]

1981

1979

E. W. Weber, J. E. M. Goldsmith, “Anomalous shifts of hydrogen Balmer-α fine structures lines in helium,” Phys. Lett. 70A, 95 (1979).

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

1978

For a review of these techniques, seeA. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

1976

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

Bonczyk, P. A.

For a review of these techniques, seeA. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Eckbreth, A. C.

For a review of these techniques, seeA. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Farrow, R. L.

Ferguson, A. I.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, J. E. Lawler, “Optogalvanic spectroscopy,” Contemp. Phys. 22, 235 (1981).
[CrossRef]

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

E. W. Weber, J. E. M. Goldsmith, “Anomalous shifts of hydrogen Balmer-α fine structures lines in helium,” Phys. Lett. 70A, 95 (1979).

J. E. M. Goldsmith (to be published).

J. E. M. Goldsmith, R. L. Farrow (to be published).

Hänsch, T. W.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

Jackson, D. J.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Lawler, J. E.

J. E. M. Goldsmith, J. E. Lawler, “Optogalvanic spectroscopy,” Contemp. Phys. 22, 235 (1981).
[CrossRef]

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, in High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, Berlin, 1976).

Rahn, L. A.

Schawlow, A. L.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Verdieck, J. F.

For a review of these techniques, seeA. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Weber, E. W.

E. W. Weber, J. E. M. Goldsmith, “Anomalous shifts of hydrogen Balmer-α fine structures lines in helium,” Phys. Lett. 70A, 95 (1979).

Wieman, C.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

Appl. Spectrosc. Rev.

For a review of these techniques, seeA. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Laser Raman and fluorescence techniques for practical combustion diagnostics,” Appl. Spectrosc. Rev. 13, 15 (1978).
[CrossRef]

Contemp. Phys.

J. E. M. Goldsmith, J. E. Lawler, “Optogalvanic spectroscopy,” Contemp. Phys. 22, 235 (1981).
[CrossRef]

Opt. Lett.

Phys. Lett.

E. W. Weber, J. E. M. Goldsmith, “Anomalous shifts of hydrogen Balmer-α fine structures lines in helium,” Phys. Lett. 70A, 95 (1979).

Phys. Rev. Lett.

C. Wieman, T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170 (1976).
[CrossRef]

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Other

J. E. M. Goldsmith (to be published).

J. E. M. Goldsmith, R. L. Farrow (to be published).

V. S. Letokhov, in High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, Berlin, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Apparatus used to demonstrate spatially resolved saturated absorption spectroscopy.

Fig. 2
Fig. 2

Signals from a 30-GHz scan across the sodium 3S1/2−3P3/2 transition at 589 nm. Top traces: saturated absorption signal (solid line) with least-squares fit to a Voigt profile (dashed line). Botton trace: simultaneously recorded optogalvanic reference signal.

Fig. 3
Fig. 3

Spatial scans showing the saturated absorption signal strength (arbitrary units) in various regions of the flame. The horizontal position is measured perpendicular to the burner slot (with a position of 0.0 mm corresponding to directly over the slot), and the vertical position represents distance above the burner head.

Fig. 4
Fig. 4

Saturated absorption signal versus sodium concentration of four NaCl solutions aspirated into the flame.

Metrics