Abstract

We describe phase-matched stimulated four-photon mixing in single-mode fibers in the minimum-chromatic-dispersion region. Phase matching is achieved by using the refractive-index slope change and the guiding properties of the fundamental mode. Experimental results on large-shift (1600-cm−1) single-idler generation in single-mode fibers with 1.319-μm Nd:YAG laser pumping are presented.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Proc. IEEE, Special Issue on Optical Fiber Communication (1980).
  2. L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
    [CrossRef]
  3. C. Lin, H. Kogelnik, L. G. Cohen, Opt. Lett. 5, 476 (1980).
    [CrossRef] [PubMed]
  4. R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
    [CrossRef]
  5. C. Lin, M. A. Bösch, Appl. Phys. Lett. 38, 479 (1981);K. O. Hill, D. C. Johnson, B. S. Kawasaki, Appl. Opt. 20, 1075 (1981).
    [CrossRef] [PubMed]
  6. J. W. Fleming, Electron. Lett. 14, 326 (1978);Bell Laboratories, Murray Hill, N.J. 07974, personal communication.
    [CrossRef]
  7. S. Kobayashi et al., in Proceedings of First International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electrical Engineers of Japan, Tokyo, 1977).
  8. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  9. K. Washio et al., Electron. Lett. 16, 331 (1980).K. Washio et al., Electron. Lett. 16, 658 (1980).
    [CrossRef]
  10. K. Nassau, in Proceedings of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981).

1981 (1)

C. Lin, M. A. Bösch, Appl. Phys. Lett. 38, 479 (1981);K. O. Hill, D. C. Johnson, B. S. Kawasaki, Appl. Opt. 20, 1075 (1981).
[CrossRef] [PubMed]

1980 (2)

C. Lin, H. Kogelnik, L. G. Cohen, Opt. Lett. 5, 476 (1980).
[CrossRef] [PubMed]

K. Washio et al., Electron. Lett. 16, 331 (1980).K. Washio et al., Electron. Lett. 16, 658 (1980).
[CrossRef]

1979 (1)

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

1978 (1)

J. W. Fleming, Electron. Lett. 14, 326 (1978);Bell Laboratories, Murray Hill, N.J. 07974, personal communication.
[CrossRef]

1975 (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
[CrossRef]

1971 (1)

Bösch, M. A.

C. Lin, M. A. Bösch, Appl. Phys. Lett. 38, 479 (1981);K. O. Hill, D. C. Johnson, B. S. Kawasaki, Appl. Opt. 20, 1075 (1981).
[CrossRef] [PubMed]

Cohen, L. G.

C. Lin, H. Kogelnik, L. G. Cohen, Opt. Lett. 5, 476 (1980).
[CrossRef] [PubMed]

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

Fleming, J. W.

J. W. Fleming, Electron. Lett. 14, 326 (1978);Bell Laboratories, Murray Hill, N.J. 07974, personal communication.
[CrossRef]

French, W. G.

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

Gloge, D.

Kobayashi, S.

S. Kobayashi et al., in Proceedings of First International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electrical Engineers of Japan, Tokyo, 1977).

Kogelnik, H.

Lin, C.

C. Lin, M. A. Bösch, Appl. Phys. Lett. 38, 479 (1981);K. O. Hill, D. C. Johnson, B. S. Kawasaki, Appl. Opt. 20, 1075 (1981).
[CrossRef] [PubMed]

C. Lin, H. Kogelnik, L. G. Cohen, Opt. Lett. 5, 476 (1980).
[CrossRef] [PubMed]

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

Nassau, K.

K. Nassau, in Proceedings of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981).

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
[CrossRef]

Washio, K.

K. Washio et al., Electron. Lett. 16, 331 (1980).K. Washio et al., Electron. Lett. 16, 658 (1980).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Lin, M. A. Bösch, Appl. Phys. Lett. 38, 479 (1981);K. O. Hill, D. C. Johnson, B. S. Kawasaki, Appl. Opt. 20, 1075 (1981).
[CrossRef] [PubMed]

Electron. Lett. (3)

J. W. Fleming, Electron. Lett. 14, 326 (1978);Bell Laboratories, Murray Hill, N.J. 07974, personal communication.
[CrossRef]

K. Washio et al., Electron. Lett. 16, 331 (1980).K. Washio et al., Electron. Lett. 16, 658 (1980).
[CrossRef]

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-11, 100 (1975).
[CrossRef]

Opt. Lett. (1)

Other (3)

Proc. IEEE, Special Issue on Optical Fiber Communication (1980).

K. Nassau, in Proceedings of Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981).

S. Kobayashi et al., in Proceedings of First International Conference on Integrated Optics and Optical Fiber Communication (Institute of Electrical Engineers of Japan, Tokyo, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive index as a function of wavelength for SiO2 glass.

Fig. 2
Fig. 2

Phase mismatch versus frequency shift Δν at different pump wavelengths λp near the minimum dispersion wavelength that are due to material (ΔKm) (dotted line), waveguide (ΔKW) (dashed-dotted line), and total (ΔKt) (dashed line) dispersion.

Fig. 3
Fig. 3

b(V), normalized propagation constant as a function of V [2πa(2nΔn)1/2/λ], the normalized frequency, for the 01 mode of a step-index fiber. The values of V corresponding to the pump, the Stokes (signal) frequency, and the anti-Stokes (idler) frequency, in our experiment are indicated.

Fig. 4
Fig. 4

Output spectra showing the signal–idler pair generated by phase-matched four-photon mixing in a single-mode fiber pumped at 1.319 μm. The Raman band is also generated.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ K m = K i + K s 2 K p = ( n i ω i + n s ω s 2 n p ω p ) / C .
Δ K w = 2 π Δ n C ( b i ν i + b s ν s 2 b p ν p ) = Δ n ( b i ω i + b s ω s 2 b p ω p ) / C ,
Δ K t = Δ K m + Δ K w .

Metrics